
Java DB Reference Manual
Version 10.3

Derby Document build:
July 24, 2007, 1:24:20 PM (EDT)

Version 10.3 Java DB Reference Manual

i

Contents
Copyright..9

License... 10

Relationship between Java DB and Derby...14

About this guide..15
Purpose of this document.. 15
Audience... 15
How this guide is organized...15

SQL language reference...16
Capitalization and special characters..16
SQL identifiers .. 16

Rules for SQL92 identifiers... 17
SQL92Identifier.. 17
column-Name...18
correlation-Name... 18
new-table-Name...19
schemaName...19
Simple-column-Name.. 19
synonym-Name..19
table-Name.. 20
view-Name... 20
index-Name..20
constraint-Name...20
cursor-Name.. 21
TriggerName.. 21
AuthorizationIdentifier.. 21

Statements.. 21
Interaction with the dependency system...22
ALTER TABLE statement..23
CALL (PROCEDURE) statement.. 26
CREATE statements... 26
DECLARE GLOBAL TEMPORARY TABLE statement....................................... 41
DELETE statement..43
DROP statements..44
GRANT statement ..46
INSERT statement...47
LOCK TABLE statement... 48
RENAME statements...49
REVOKE statement ..51
SET statements... 54
SELECT statement..55
UPDATE statement... 57

SQL clauses... 58
CONSTRAINT clause..58
FOR UPDATE clause..64
FROM clause...65
GROUP BY clause..65
HAVING clause... 66
ORDER BY clause.. 66
WHERE clause..67
WHERE CURRENT OF clause...68

Version 10.3 Java DB Reference Manual

ii

SQL expressions..68
SelectExpression... 70
TableExpression.. 72
VALUES expression.. 73
Expression precedence... 74
Boolean expressions... 75
Dynamic parameters... 76

JOIN operations... 79
INNER JOIN operation..79
LEFT OUTER JOIN operation...81
RIGHT OUTER JOIN operation.. 81

SQL queries..82
Query... 82
ScalarSubquery... 84
TableSubquery...85

Built-in functions..85
Standard built-in functions...86
Aggregates (set functions).. 87
ABS or ABSVAL function.. 88
ACOS function...88
ASIN function...88
ATAN function... 89
AVG function... 89
BIGINT function... 90
CASE expressions...90
CAST function... 91
CEIL or CEILING function...93
CHAR function...94
Concatenation operator... 95
COS function... 96
COUNT function.. 96
COUNT(*) function.. 97
CURRENT DATE function...97
CURRENT_DATE function..97
CURRENT ISOLATION function... 97
CURRENT SCHEMA function...97
CURRENT TIME function..98
CURRENT_TIME function...98
CURRENT TIMESTAMP function... 98
CURRENT_TIMESTAMP function...98
CURRENT_USER function..99
DATE function... 99
DAY function..99
DEGREES function... 100
DOUBLE function.. 100
EXP function..100
FLOOR function...101
HOUR function.. 101
IDENTITY_VAL_LOCAL function.. 101
INTEGER function... 103
LCASE or LOWER function.. 103
LENGTH function.. 104
LN or LOG function... 104
LOG10 function... 104
LOCATE function...105
LTRIM function.. 105

Version 10.3 Java DB Reference Manual

iii

MAX function... 105
MIN function.. 106
MINUTE function... 107
MOD function...107
MONTH function..107
NULLIF expressions.. 108
PI function..108
RADIANS function... 108
RTRIM function..108
SECOND function..109
SESSION_USER function... 109
SIN function... 109
SMALLINT function... 110
SQRT function... 110
SUBSTR function.. 110
SUM function... 111
TAN function..112
TIME function.. 112
TIMESTAMP function.. 112
TRIM function.. 113
UCASE or UPPER function...114
USER function... 114
VARCHAR function... 115
XMLEXISTS operator.. 115
XMLPARSE operator...117
XMLQUERY operator.. 118
XMLSERIALIZE operator.. 119
YEAR function... 120

Built-in system functions..121
SYSCS_UTIL.SYSCS_CHECK_TABLE system function..................................121
SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY system function......... 121
SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS system function............. 121

Built-in system procedures.. 122
SYSCS_UTIL.SYSCS_BACKUP_DATABASE system procedure.................... 122
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT system procedure....122
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE
system procedure.. 123
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT
system procedure.. 124
SYSCS_UTIL.SYSCS_CHECKPOINT_DATABASE system procedure........... 125
SYSCS_UTIL.SYSCS_COMPRESS_TABLE system procedure...................... 125
SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE system procedure.....126
SYSCS_UTIL.SYSCS_DISABLE_LOG_ARCHIVE_MODE system
procedure...128
SYSCS_UTIL.SYSCS_EXPORT_TABLE system procedure............................128
SYSCS_UTIL.SYSCS_EXPORT_TABLE_LOBS_TO_EXTFILE system
procedure...129
SYSCS_UTIL.SYSCS_EXPORT_QUERY system procedure.......................... 131
SYSCS_UTIL.SYSCS_EXPORT_QUERY_LOBS_TO_EXTFILE system
procedure...132
SYSCS_UTIL.SYSCS_IMPORT_DATA system procedure.............................. 133
SYSCS_UTIL.SYSCS_IMPORT_DATA_LOBS_FROM_EXTFILE system
procedure...134
SYSCS_UTIL.SYSCS_IMPORT_TABLE system procedure.............................136
SYSCS_UTIL.SYSCS_IMPORT_TABLE_LOBS_FROM_EXTFILE system
procedure...137

Version 10.3 Java DB Reference Manual

iv

SYSCS_UTIL.SYSCS_FREEZE_DATABASE system procedure.....................139
SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE system procedure................139
SYSCS_UTIL.SYSCS_RELOAD_SECURITY_POLICY system procedure...... 139
SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY system procedure...... 140
SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS system procedure.......... 140
SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING system procedure............141

SYSCS_DIAG diagnostic tables and functions...141
Data types...144

Built-In type overview.. 144
Numeric types..145
Data type assignments and comparison, sorting, and ordering........................ 147
BIGINT data type.. 150
BLOB data type...151
CHAR data type.. 151
CHAR FOR BIT DATA data type..152
CLOB data type...153
DATE data type...154
DECIMAL data type...154
DOUBLE data type..155
DOUBLE PRECISION data type...155
FLOAT data type...156
INTEGER data type...157
LONG VARCHAR data type..157
LONG VARCHAR FOR BIT DATA data type... 157
NUMERIC data type..158
REAL data type... 158
SMALLINT data type...159
TIME data type..159
TIMESTAMP data type..160
VARCHAR data type...160
VARCHAR FOR BIT DATA data type...161
XML data type... 161

SQL reserved words... 163

Derby support for SQL-92 features ... 167

Derby system tables... 175
SYSALIASES system table... 175
SYSCHECKS system table..175
SYSCOLPERMS system table...176
SYSCOLUMNS system table...176
SYSCONGLOMERATES system table..177
SYSCONSTRAINTS system table... 178
SYSDEPENDS system table..179
SYSFILES system table...179
SYSFOREIGNKEYS system table...180
SYSKEYS system table... 180
SYSROUTINEPERMS system table.. 181
SYSSCHEMAS system table...181
SYSSTATISTICS system table..182
SYSSTATEMENTS system table...182
SYSTABLEPERMS system table.. 183
SYSTABLES system table.. 184
SYSTRIGGERS system table.. 184
SYSVIEWS system table... 186

Derby exception messages and SQL states.. 187

Version 10.3 Java DB Reference Manual

v

SQL error messages and exceptions.. 187

JDBC reference... 226
Core JDBC java.sql classes, interfaces, and methods...................................... 226
java.sql.Driver interface...226

java.sql.Driver.getPropertyInfo method... 227
java.sql.DriverManager.getConnection method..227

Derby database connection URL syntax...228
Syntax of database connection URLs for applications with embedded databases
... 228
Additional SQL syntax...229
Attributes of the Derby database connection URL ...229

java.sql.Connection interface... 229
java.sql.Connection.setTransactionIsolation method.. 230
java.sql.Connection.setReadOnly method...230
java.sql.Connection.isReadOnly method...230
Connection functionality not supported... 230

java.sql.DatabaseMetaData interface... 230
DatabaseMetaData result sets.. 230
java.sql.DatabaseMetaData.getProcedureColumns method.............................231
Parameters to getProcedureColumns... 231
Columns in the ResultSet returned by getProcedureColumns..........................231
java.sql.DatabaseMetaData.getBestRowIdentifier method................................232

java.sql.Statement interface..232
ResultSet objects ... 233

java.sql.CallableStatement interface..233
CallableStatements and OUT Parameters ...233
CallableStatements and INOUT Parameters ... 233

java.sql.SQLException class.. 235
java.sql.PreparedStatement interface.. 235

Prepared statements and streaming columns ..235
java.sql.ResultSet interface.. 236

ResultSets and streaming columns ... 236
java.sql.ResultSetMetaData interface.. 237
java.sql.SQLWarning class... 237
java.sql.SQLXML interface.. 237
Mapping of java.sql.Types to SQL types.. 238

Mapping of java.sql.Blob and java.sql.Clob interfaces......................................239
JDBC 2.0 features.. 241

java.sql.CallableStatement interface: supported JDBC 2.0 methods................ 241
java.sql.Connection interface: supported JDBC 2.0 methods........................... 241
java.sql.DatabaseMetaData interface: supported JDBC 2.0 methods...............241
java.sql.PreparedStatement interface: supported JDBC 2.0 methods.............. 241
java.sql.ResultSet interface: supported JDBC 2.0 methods..............................242
java.sql.ResultSetMetaData interface: supported JDBC 2.0 methods.............. 243
java.sql.Statement interface: supported JDBC 2.0 methods.............................243

java.sql.BatchUpdateException class..244
JDBC Package for Connected Device Configuration/Foundation Profile
(JSR169).. 244
JDBC 3.0 features ...245

java.sql.Connection interface: supported JDBC 3.0 methods........................... 245
java.sql.DatabaseMetaData interface: supported JDBC 3.0 methods...............246
java.sql.ParameterMetaData interface: supported JDBC 3.0 methods............. 246
java.sql.PreparedStatement interface: supported JDBC 3.0 methods.............. 246
java.sql.Savepoint interface...247
java.sql.Statement interface: supported JDBC 3.0 methods.............................248

Version 10.3 Java DB Reference Manual

vi

JDBC 4.0-only features .. 250
Refined subclasses of SQLException... 250
java.sql.Connection interface: JDBC 4.0 features...251
java.sql.DatabaseMetaData interface: JDBC 4.0 features................................ 251
java.sql.Statement interface: JDBC 4.0 features...251
javax.sql.DataSource interface: JDBC 4.0 features.. 251

JDBC escape syntax .. 252
JDBC escape keyword for call statements... 252
JDBC escape syntax...252
JDBC escape syntax for LIKE clauses... 253
JDBC escape syntax for fn keyword...253
JDBC escape syntax for outer joins..257
JDBC escape syntax for time formats.. 258
JDBC escape syntax for date formats.. 258
JDBC escape syntax for timestamp formats...258

Setting attributes for the database connection URL ..259
bootPassword=key attribute...259
collation=collation attribute.. 259
create=true attribute.. 260
createFrom=path attribute.. 261
databaseName=nameofDatabase attribute..261
dataEncryption=true attribute...261
encryptionKey=key attribute...262
encryptionProvider=providerName attribute...262
encryptionAlgorithm=algorithm attribute.. 263
logDevice=logDirectoryPath attribute..264
newEncryptionKey=key attribute... 264
newBootPassword=newPassword attribute..264
password=userPassword attribute.. 265
restoreFrom=path attribute...265
rollForwardRecoveryFrom=path attribute... 265
securityMechanism=value attribute... 266
shutdown=true attribute..266
territory=ll_CC attribute...267
user=userName attribute...268
ssl=sslMode attribute.. 268
Creating a connection without specifying attributes... 268

J2EE Compliance: Java Transaction API and javax.sql Interfaces..............................269
The JTA API .. 270

Notes on Product Behavior... 270
javax.sql: JDBC Interfaces..270

Derby API... 272
Stand-alone tools and utilities... 272
JDBC implementation classes..272

JDBC driver... 272
Data Source Classes...272

Miscellaneous utilities and interfaces... 273

Supported territories ... 274

Derby limitations... 275
Limitations for database manager values...275
DATE, TIME, and TIMESTAMP limitations...275
Limitations on identifier length ...276
Numeric limitations..276

Version 10.3 Java DB Reference Manual

vii

String limitations..277
XML limitations...277

Trademarks.. 279

Java DB Reference Manual

8

Apache Software FoundationJava DB Reference ManualApache Derby

Java DB Reference Manual

9

Copyright

Copyright 2004-2007 The Apache Software Foundation

Copyright 2007 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California
95054, U.S.A.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0.

Related information

License

http://www.apache.org/licenses/LICENSE-2.0

Java DB Reference Manual

10

License

The Apache License, Version 2.0

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use,
 reproduction, and distribution as defined by Sections 1 through
 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized
 by the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under
 common control with that entity. For the purposes of this
 definition, "control" means (i) the power, direct or indirect,
 to cause the direction or management of such entity, whether by
 contract or otherwise, or (ii) ownership of fifty percent (50%)
 or more of the outstanding shares, or (iii) beneficial ownership
 of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making
 modifications, including but not limited to software source code,
 documentation source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or
 Object form, that is based on (or derived from) the Work and
 for which the editorial revisions, annotations, elaborations,
 or other modifications represent, as a whole, an original work
 of authorship. For the purposes of this License, Derivative
 Works shall not include works that remain separable from, or
 merely link (or bind by name) to the interfaces of, the Work
 and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or
 additions to that Work or Derivative Works thereof, that is
 intentionally submitted to Licensor for inclusion in the Work
 by the copyright owner or by an individual or Legal Entity
 authorized to submit on behalf of the copyright owner. For the
 purposes of this definition,
 "submitted" means any form of electronic, verbal, or written
 communication sent to the Licensor or its representatives,
 including but not limited to communication on electronic mailing
 lists, source code control systems, and issue tracking systems

Java DB Reference Manual

11

 that are managed by, or on behalf of, the Licensor for the
 purpose of discussing and improving the Work, but excluding
 communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a
 Contribution."

 "Contributor" shall mean Licensor and any individual or Legal
 Entity on behalf of whom a Contribution has been received by
 Licensor and subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions
 of this License, each Contributor hereby grants to You a
 perpetual, worldwide, non-exclusive, no-charge, royalty-free,
 irrevocable copyright license to reproduce, prepare Derivative
 Works of, publicly display, publicly perform, sublicense, and
 distribute the Work and such Derivative Works in Source or
 Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have
 made, use, offer to sell, sell, import, and otherwise transfer
 the Work, where such license applies only to those patent claims
 licensable by such Contributor that are necessarily infringed by
 their Contribution(s) alone or by combination of their
 Contribution(s) with the Work to which such Contribution(s) was
 submitted. If You institute patent litigation against any entity
 (including a cross-claim or counterclaim in a lawsuit) alleging
 that the Work or a Contribution incorporated within the Work
 constitutes direct or contributory patent infringement, then any
 patent licenses granted to You under this License for that Work
 shall terminate as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute
 must include a readable copy of the attribution notices
 contained within such NOTICE file, excluding those notices
 that do not pertain to any part of the Derivative Works, in
 at least one of the following places: within a NOTICE text
 file distributed as part of the Derivative Works; within the
 Source form or documentation, if provided along with the
 Derivative Works; or, within a display generated by the
 Derivative Works, if and wherever such third-party notices
 normally appear. The contents of the NOTICE file are for
 informational purposes only and do not modify the License.
 You may add Your own attribution notices within Derivative
 Works that You distribute, alongside or as an addendum to
 the NOTICE text from the Work, provided that such additional
 attribution notices cannot be construed as modifying the
 License.

 You may add Your own copyright statement to Your modifications

Java DB Reference Manual

12

 and may provide additional or different license terms and
 conditions for use, reproduction, or distribution of Your
 modifications, or for any such Derivative Works as a whole,
 provided Your use, reproduction, and distribution of the Work
 otherwise complies with the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state
 otherwise, any Contribution intentionally submitted for
 inclusion in the Work by You to the Licensor shall be under the
 terms and conditions of this License, without any additional
 terms or conditions. Notwithstanding the above, nothing herein
 shall supersede or modify the terms of any separate license
 agreement you may have executed with Licensor regarding such
 Contributions.

 6. Trademarks. This License does not grant permission to use the
 trade names, trademarks, service marks, or product names of the
 Licensor, except as required for reasonable and customary use
 in describing the origin of the Work and reproducing the content
 of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or
 conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
 FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for
 determining the appropriateness of using or redistributing the
 Work and assume any risks associated with Your exercise of
 permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and
 grossly negligent acts) or agreed to in writing, shall any
 Contributor be liable to You for damages, including any direct,
 indirect, special, incidental, or consequential damages of any
 character arising as a result of this License or out of the use
 or inability to use the Work (including but not limited to
 damages for loss of goodwill, work stoppage, computer failure or
 malfunction, or any and all other commercial damages or losses),
 even if such Contributor has been advised of the possibility of
 such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by
 reason of your accepting any such warranty or additional
 liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Java DB Reference Manual

13

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied. See the License for the specific language governing
 permissions and limitations under the License.

Java DB Reference Manual

14

Relationship between Java(TM) DB and Derby

Java(TM) DB is a relational database management system that is based on the Java
programming language and SQL. Java DB is a commercial release of the Apache
Software Foundation's (ASF) open source relational database project. The Apache
project is called Derby.

The Java DB product includes Derby without any modification whatsoever to the
underlying source code.

Technical support is available for purchase for the Java DB product through Sun.

Because Java DB and Derby have the same functionality, the Java DB documentation
refers to the core functionality as Derby.

Java DB Version 10.3 is based on the Derby Version 10.3 release. References to "Derby"
in the Java DB documentation refer to the Version 10.3 release of Apache Derby.

Java DB Reference Manual

15

About this guide

For general information about the Derby documentation, such as a complete list of books,
conventions, and further reading, see Getting Started with Java DB.

Purpose of this document
This book, the Java DB Reference Manual, provides reference information about Derby.
It covers Derby's SQL language, the Derby implementation of JDBC, Derby system
catalogs, Derby error messages, Derby properties, and SQL keywords.

Audience
This book is a reference for Derby users, typically application developers. Derby users
who are not familiar with the SQL standard or the Java programming language will
benefit from consulting books on those topics.

Derby users who want a how-to approach to working with Derby or an introduction to
Derby concepts should read the Java DB Developer's Guide.

How this guide is organized
This guide includes the following sections:

• SQL language reference

Reference information about Derby's SQL language, including manual pages for
statements, functions, and other syntax elements.

• SQL reserved words

SQL keywords beyond the standard SQL-92 keywords.
• Derby support for SQL-92 features

A list of SQL-92 features that Derby does and does not support.
• Derby system tables

Reference information about the Derby system catalogs.
• Derby exception messages and SQL states

Information about Derby exception messages.
• JDBC reference

Information about Derby's implementation of the JDBC interface including support
for JDBC 2.0 features.

• Setting attributes for the database connection URL

Information about the supported attributes to Derby's JDBC database connection
URL.

• J2EE Compliance: Java Transaction API and javax.sql Interfaces

Information about the supported attributes to Derby's support for the Java
Transaction API.

• Derby API

Notes about proprietary APIs for Derby.

Java DB Reference Manual

16

SQL language reference

Derby implements an SQL-92 core subset, as well as some SQL-99 features.

This section provides an overview of the current SQL language by describing the
statements, built-in functions, data types, expressions, and special characters it contains.

Capitalization and special characters
Using the classes and methods of JDBC, you submit SQL statements to Derby as
strings. The character set permitted for strings containing SQL statements is Unicode.
Within these strings, the following rules apply:

• Double quotation marks delimit special identifiers referred to in SQL-92 as delimited
identifiers.

• Single quotation marks delimit character strings.
• Within a character string, to represent a single quotation mark or apostrophe, use

two single quotation marks. (In other words, a single quotation mark is the escape
character for a single quotation mark.)

A double quotation mark does not need an escape character. To represent a double
quotation mark, simply use a double quotation mark. However, note that in a Java
program, a double quotation mark requires the backslash escape character.

Example:

-- a single quotation mark is the escape character
-- for a single quotation mark

VALUES 'Joe''s umbrella'
-- in ij, you don't need to escape the double quotation marks
VALUES 'He said, "hello!"'

n = stmt.executeUpdate(
 "UPDATE aTable setStringcol = 'He said, \"hello!\"'");

• SQL keywords are case-insensitive. For example, you can type the keyword
SELECT as SELECT, Select, select, or sELECT.

• SQL-92-style identifiers are case-insensitive (see SQL92Identifier), unless they are
delimited.

• Java-style identifiers are always case-sensitive.
• * is a wildcard within a SelectExpression. See The * wildcard. It can also be the

multiplication operator. In all other cases, it is a syntactical metasymbol that flags
items you can repeat 0 or more times.

• % and _ are character wildcards when used within character strings following a
LIKE operator (except when escaped with an escape character). See Boolean
expressions.

• Two dashes (--) and a newline character delimit a comment, as per the SQL-92
standard. The two dashes start the comment and the newline character ends the
comment.

SQL identifiers
An identifier is the representation within the language of items created by the user, as
opposed to language keywords or commands. Some identifiers stand for dictionary
objects, which are the objects you create- such as tables, views, indexes, columns, and
constraints- that are stored in a database. They are called dictionary objects because

Java DB Reference Manual

17

Derby stores information about them in the system tables, sometimes known as a data
dictionary. SQL also defines ways to alias these objects within certain statements.

Each kind of identifier must conform to a different set of rules. Identifiers representing
dictionary objects must conform to SQL-92 identifier rules and are thus called
SQL92Identifiers.

Rules for SQL92 identifiers

Ordinary identifiers are identifiers not surrounded by double quotation marks. Delimited
identifiers are identifiers surrounded by double quotation marks.

An ordinary identifier must begin with a letter and contain only letters, underscore
characters (_), and digits. The permitted letters and digits include all Unicode letters and
digits, but Derby does not attempt to ensure that the characters in identifiers are valid in
the database's locale.

A delimited identifier can contain any characters within the double quotation marks.
The enclosing double quotation marks are not part of the identifier; they serve only to
mark its beginning and end. Spaces at the end of a delimited identifier are insignificant
(truncated). Derby translates two consecutive double quotation marks within a delimited
identifier as one double quotation mark-that is, the "translated" double quotation mark
becomes a character in the delimited identifier.

Periods within delimited identifiers are not separators but are part of the identifier (the
name of the dictionary object being represented).

So, in the following example:

"A.B"

is a dictionary object, while

"A"."B"

is a dictionary object qualified by another dictionary object (such as a column named "B"
within the table "A").

SQL92Identifier

An SQL92Identifier is a dictionary object identifier that conforms to the rules of SQL-92.
SQL-92 states that identifiers for dictionary objects are limited to 128 characters and are
case-insensitive (unless delimited by double quotes), because they are automatically
translated into uppercase by the system. You cannot use reserved words as identifiers
for dictionary objects unless they are delimited. If you attempt to use a name longer than
128 characters, SQLException X0X11 is raised.

Derby defines keywords beyond those specified by the SQL-92 standard (see SQL
reserved words).

Example

-- the view name is stored in the
-- system catalogs as ANIDENTIFIER
CREATE VIEW AnIdentifier (RECEIVED) AS VALUES 1
-- the view name is stored in the system
-- catalogs with case intact
CREATE VIEW "ACaseSensitiveIdentifier" (RECEIVED) AS VALUES 1

This section describes the rules for using SQL92Identifiers to represent the following
dictionary objects.

Java DB Reference Manual

18

Qualifying dictionary objects

Since some dictionary objects can be contained within other objects, you can qualify
those dictionary object names. Each component is separated from the next by a period.
An SQL92Identifier is "dot-separated." You qualify a dictionary object name in order to
avoid ambiguity.

column-Name

In many places in the SQL syntax, you can represent the name of a column by qualifying
it with a table-Name or correlation-Name.

In some situations, you cannot qualify a column-Name with a table-Name or a
correlation-Name, but must use a Simple-column-Name instead. Those situations are:

• creating a table (CREATE TABLE statement)
• specifying updatable columns in a cursor
• in a column's correlation name in a SELECT expression (see SelectExpression)
• in a column's correlation name in a TableExpression (see TableExpression)

You cannot use correlation-Names for updatable columns; using correlation-Names in
this way will cause an SQL exception. For example:

SELECT c11 AS col1, c12 AS col2, c13 FROM t1 FOR UPDATE of c11,c13

In this example, the correlation-Name col1 FOR c11 is not permitted because c11 is
listed in the FOR UPDATE list of columns. You can use the correlation-Name FOR c12
because it is not in the FOR UPDATE list.

Syntax

[{ table-Name | correlation-Name } .] SQL92Identifier

Example

-- C.Country is a column-Name qualified with a
-- correlation-Name.
SELECT C.Country
FROM APP.Countries C

correlation-Name

A correlation-Name is given to a table expression in a FROM clause as a new name or
alias for that table. You do not qualify a correlation-Name with a schema-Name.

You cannot use correlation-Names for updatable columns; using correlation-Names in
this way will cause an SQL exception. For example:

SELECT c11 AS col1, c12 AS col2, c13 FROM t1 FOR UPDATE of c11,c13

In this example, the correlation-Name col1 FOR c11 is not permitted because c11 is
listed in the FOR UPDATE list of columns. You can use the correlation-Name FOR c12
because it is not in the FOR UPDATE list.

Syntax

SQL92Identifier

Example

-- C is a correlation-Name
SELECT C.NAME
FROM SAMP.STAFF C

Java DB Reference Manual

19

new-table-Name

A new-table-Name represents a renamed table. You cannot qualify a new-table-Name
with a schema-Name.

Syntax

SQL92Identifier

Example

-- FlightBooks is a new-table-Name that does not include a schema-Name
RENAME TABLE FLIGHTAVAILABILITY TO FLIGHTAVAILABLE

schemaName

A schemaName represents a schema. Schemas contain other dictionary objects, such
as tables and indexes. Schemas provide a way to name a subset of tables and other
dictionary objects within a database.

You can explicitly create or drop a schema. The default user schema is the APP schema
(if no user name is specified at connection time). You cannot create objects in schemas
starting with SYS.

Thus, you can qualify references to tables with the schema name. When a schemaName
is not specified, the default schema name is implicitly inserted. System tables are placed
in the SYS schema. You must qualify all references to system tables with the SYS
schema identifier. For more information about system tables, see Derby system tables.

A schema is hierarchically the highest level of dictionary object, so you cannot qualify a
schemaName.

Syntax

SQL92Identifier

Example

-- SAMP.EMPLOYEE is a table-Name qualified by a schemaName
SELECT COUNT(*) FROM SAMP.EMPLOYEE
-- You must qualify system catalog names with their schema, SYS
SELECT COUNT(*) FROM SYS.SysColumns

Simple-column-Name

A Simple-column-Name is used to represent a column when it cannot be qualified by a
table-Name or correlation-Name. This is the case when the qualification is fixed, as it is in
a column definition within a CREATE TABLE statement.

Syntax

SQL92Identifier

Example

-- country is a Simple-column-Name
CREATE TABLE CONTINENT (COUNTRY VARCHAR(26) NOT NULL PRIMARY KEY,
COUNTRY_ISO_CODE CHAR(2), REGION VARCHAR(26))

synonym-Name

Java DB Reference Manual

20

A synonym-Name represents a synonym for a table or a view. You can qualify a
synonym-Name with a schema-Name.

Syntax

[schemaName.] SQL92Identifier

table-Name

A table-Name represents a table. You can qualify a table-Name with a schemaName.

Syntax

[schemaName.] SQL92Identifier

Example

-- SAMP.PROJECT is a table-Name that includes a schemaName
SELECT COUNT(*) FROM SAMP.PROJECT

view-Name

A view-Name represents a table or a view. You can qualify a view-Name with a
schema-Name.

Syntax

[schemaName.] SQL92Identifier

Example

-- This is a View qualified by a schema-Name
SELECT COUNT(*) FROM SAMP.EMP_RESUME

index-Name

An index-Name represents an index. Indexes live in schemas, so you can qualify their
names with schema-Names. Indexes on system tables are in the SYS schema.

Syntax

[schemaName .] SQL92Identifier

Example

DROP INDEX APP.ORIGINDEX;
-- OrigIndex is an index-Name without a schema-Name
CREATE INDEX ORIGINDEX ON FLIGHTS (ORIG_AIRPORT)

constraint-Name

You cannot qualify constraint-names.

Syntax

SQL92Identifier

Example

-- country_fk2 is a constraint name
CREATE TABLE DETAILED_MAPS (COUNTRY_ISO_CODE CHAR(2)
CONSTRAINT country_fk2 REFERENCES COUNTRIES)

Java DB Reference Manual

21

cursor-Name

A cursor-Name refers to a cursor. No SQL language command exists to assign a name
to a cursor. Instead, you use the JDBC API to assign names to cursors or to retrieve
system-generated names. For more information, see the Java DB Developer's Guide. If
you assign a name to a cursor, you can refer to that name from within SQL statements.

You cannot qualify a cursor-Name.

Syntax

SQL92Identifier

Example

stmt.executeUpdate("UPDATE SAMP.STAFF SET COMM = " +
"COMM + 20 " + "WHERE CURRENT OF " + ResultSet.getCursorName());

TriggerName

A TriggerName refers to a trigger created by a user.

Syntax

[schemaName .] SQL92Identifier

Example

DROP TRIGGER TRIG1

AuthorizationIdentifier

User names within the Derby system are known as authorization identifiers. The
authorization identifier represents the name of the user, if one has been provided in the
connection request. The default schema for a user is equal to its authorization identifier.
User names can be case-sensitive within the authentication system, but they are always
case-insensitive within Derby's authorization system unless they are delimited. For more
information, see the Java DB Developer's Guide.

Syntax

SQL92Identifier

Example

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.fullAccessUsers', 'Amber,FRED')

Statements
This section provides manual pages for both high-level language constructs and parts
thereof. For example, the CREATE INDEX statement is a high-level statement that you
can execute directly via the JDBC interface. This section also includes clauses, which
are not high-level statements and which you cannot execute directly but only as part
of a high-level statement. The ORDER BY and WHERE clauses are examples of this
kind of clause. Finally, this section also includes some syntactically complex portions of
statements called expressions, for example SelectExpression and TableSubquery. These
clauses and expressions receive their own manual pages for ease of reference.

Java DB Reference Manual

22

Unless it is explicitly stated otherwise, you can execute or prepare and then execute
all the high-level statements, which are all marked with the word statement, via the
interfaces provided by JDBC. This manual indicates whether an expression can be
executed as a high-level statement.

The sections provide general information about statement use, and descriptions of the
specific statements.

Interaction with the dependency system

Derby internally tracks the dependencies of prepared statements, which are SQL
statements that are precompiled before being executed. Typically they are prepared
(precompiled) once and executed multiple times.

Prepared statements depend on the dictionary objects and statements they reference.
(Dictionary objects include tables, columns, constraints, indexes, views, and triggers.)
Removing or modifying the dictionary objects or statements on which they depend
invalidates them internally, which means that Derby will automatically try to recompile
the statement when you execute it. If the statement fails to recompile, the execution
request fails. However, if you take some action to restore the broken dependency (such
as restoring the missing table), you can execute the same prepared statement, because
Derby will recompile it automatically at the next execute request.

Statements depend on one another-an UPDATE WHERE CURRENT statement depends
on the statement it references. Removing the statement on which it depends invalidates
the UPDATE WHERE CURRENT statement.

In addition, prepared statements prevent execution of certain DDL statements if there are
open results sets on them.

Manual pages for each statement detail what actions would invalidate that statement, if
prepared.

Here is an example using the Derby tool ij:

ij> CREATE TABLE mytable (mycol INT);
0 rows inserted/updated/deleted
ij> INSERT INTO mytable VALUES (1), (2), (3);
3 rows inserted/updated/deleted
-- this example uses the ij command prepare,
-- which prepares a statement
ij> prepare p1 AS 'INSERT INTO MyTable VALUES (4)';
-- p1 depends on mytable;
ij> execute p1;
1 row inserted/updated/deleted
-- Derby executes it without recompiling
ij> CREATE INDEX i1 ON mytable(mycol);
0 rows inserted/updated/deleted
-- p1 is temporarily invalidated because of new index
ij> execute p1;
1 row inserted/updated/deleted
-- Derby automatically recompiles p1 and executes it
ij> DROP TABLE mytable;
0 rows inserted/updated/deleted
-- Derby permits you to drop table
-- because result set of p1 is closed
-- however, the statement p1 is temporarily invalidated
ij> CREATE TABLE mytable (mycol INT);
0 rows inserted/updated/deleted
ij> INSERT INTO mytable VALUES (1), (2), (3);
3 rows inserted/updated/deleted
ij> execute p1;
1 row inserted/updated/deleted
-- Because p1 is invalid, Derby tries to recompile it
-- before executing.

Java DB Reference Manual

23

-- It is successful and executes.
ij> DROP TABLE mytable;
0 rows inserted/updated/deleted
-- statement p1 is now invalid,
-- and this time the attempt to recompile it
-- upon execution will fail
ij> execute p1;
ERROR 42X05: Table/View 'MYTABLE' does not exist.

ALTER TABLE statement

The ALTER TABLE statement allows you to:
• add a column to a table
• add a constraint to a table
• drop an existing constraint from a table
• increase the width of a VARCHAR, CHAR VARYING, and CHARACTER VARYING

column
• override row-level locking for the table (or drop the override)
• change the increment value and start value of the identity column
• change the nullability constraint for a column
• change the default value for a column

Syntax

ALTER TABLE table-Name
{
 ADD COLUMN column-definition |
 ADD CONSTRAINT clause |
 DROP { PRIMARY KEY | FOREIGN KEY constraint-name | UNIQUE
 constraint-name | CHECK constraint-name | CONSTRAINT constraint-name }
 ALTER [COLUMN] column-alteration |
 LOCKSIZE { ROW | TABLE }
}

column-definition

Simple-column-NameDataType
[Column-level-constraint]*
[[WITH] DEFAULT {ConstantExpression | NULL }]

column-alteration

column-Name SET DATA TYPE VARCHAR(integer) |
column-name SET INCREMENT BY integer-constant |
column-name RESTART WITH integer-constant |
column-name [NOT] NULL
 |
column-name [WITH] DEFAULT default-value

In the column-alteration, SET INCREMENT BY integer-constant, specifies the interval
between consecutive values of the identity column. The next value to be generated for
the identity column will be determined from the last assigned value with the increment
applied. The column must already be defined with the IDENTITY attribute.

RESTART WITH integer-constant specifies the next value to be generated for the
identity column. RESTART WITH is useful for a table that has an identity column that
was defined as GENERATED BY DEFAULT and that has a unique key defined on that
identity column. Because GENERATED BY DEFAULT allows both manual inserts and
system generated values, it is possible that manually inserted values can conflict with
system generated values. To work around such conflicts, use the RESTART WITH
syntax to specify the next value that will be generated for the identity column. Consider
the following example, which involves a combination of automatically generated data and
manually inserted data:

Java DB Reference Manual

24

CREATE TABLE tauto(i INT GENERATED BY DEFAULT AS IDENTITY, k INT)
CREATE UNIQUE INDEX tautoInd ON tauto(i)
INSERT INTO tauto(k) values 1,2

The system will automatically generate values for the identity column. But now you need
to manually insert some data into the identity column:

INSERT INTO tauto VALUES (3,3)
INSERT INTO tauto VALUES (4,4)
INSERT INTO tauto VALUES (5,5)

The identity column has used values 1 through 5 at this point. If you now want the
system to generate a value, the system will generate a 3, which will result in a unique
key exception because the value 3 has already been manually inserted. To compensate
for the manual inserts, issue an ALTER TABLE statement for the identity column with
RESTART WITH 6:

ALTER TABLE tauto ALTER COLUMN i RESTART WITH 6

ALTER TABLE does not affect any view that references the table being altered. This
includes views that have an "*" in their SELECT list. You must drop and re-create those
views if you wish them to return the new columns.

Adding columns

The syntax for the column-definition for a new column is the same as for a column in a
CREATE TABLE statement. This means that a column constraint can be placed on the
new column within the ALTER TABLE ADD COLUMN statement. However, a column
with a NOT NULL constraint can be added to an existing table if you give a default value;
otherwise, an exception is thrown when the ALTER TABLE statement is executed.

Just as in CREATE TABLE, if the column definition includes a unique or primary key
constraint, the column cannot contain null values, so the NOT NULL attribute must also
be specified (SQLSTATE 42831).

Note: If a table has an UPDATE trigger without an explicit column list, adding a column
to that table in effect adds that column to the implicit update column list upon which the
trigger is defined, and all references to transition variables are invalidated so that they
pick up the new column.

Adding constraints
ALTER TABLE ADD CONSTRAINT adds a table-level constraint to an existing table.
Any supported table-level constraint type can be added via ALTER TABLE. The following
limitations exist on adding a constraint to an existing table:

• When adding a foreign key or check constraint to an existing table, Derby checks
the table to make sure existing rows satisfy the constraint. If any row is invalid,
Derby throws a statement exception and the constraint is not added.

• All columns included in a primary key must contain non null data and be unique.

ALTER TABLE ADD UNIQUE or PRIMARY KEY provide a shorthand method of
defining a primary key composed of a single column. If PRIMARY KEY is specified
in the definition of column C, the effect is the same as if the PRIMARY KEY(C)
clause were specified as a separate clause. The column cannot contain null values,
so the NOT NULL attribute must also be specified.

For information on the syntax of constraints, see CONSTRAINT clause. Use the
syntax for table-level constraint when adding a constraint with the ADD TABLE ADD
CONSTRAINT syntax.

Dropping constraints

Java DB Reference Manual

25

ALTER TABLE DROP CONSTRAINT drops a constraint on an existing table. To drop
an unnamed constraint, you must specify the generated constraint name stored in
SYS.SYSCONSTRAINTS as a delimited identifier.

Dropping a primary key, unique, or foreign key constraint drops the physical index that
enforces the constraint (also known as a backing index).

Modifying columns
The column-alteration allows you to alter the named column in the following ways:

• Increasing the length of an existing VARCHAR column. CHARACTER VARYING or
CHAR VARYING can be used as synonyms for the VARCHAR keyword.

To increase the width of a column of these types, specify the data type and new
size after the column name.

You are not allowed to decrease the width or to change the data type. You are not
allowed to increase the width of a column that is part of a primary or unique key
referenced by a foreign key constraint or that is part of a foreign key constraint.

• Specifying the interval between consecutive values of the identity column.

To set an interval between consecutive values of the identity column, specify
the integer-constant. You must previously define the column with the IDENTITY
attribute (SQLSTATE 42837). If there are existing rows in the table, the values in
the column for which the SET INCREMENT default was added do not change.

• Modifying the nullability constraint of a column.

You can add the NOT NULL constraint to an existing column. To do so there must
not be existing NULL values for the column in the table.

You can remove the NOT NULL constraint from an existing column. To do so the
column must not be used in a PRIMARY KEY or UNIQUE constraint.

• Changing the default value for a column.

Setting defaults

You can specify a default value for a new column. A default value is the value that is
inserted into a column if no other value is specified. If not explicitly specified, the default
value of a column is NULL. If you add a default to a new column, existing rows in the
table gain the default value in the new column.

For more information about defaults, see CREATE TABLE statement.

Changing the lock granularity for the table

The LOCKSIZE clause allows you to override row-level locking for the specific table,
if your system uses the default setting of row-level locking. (If your system is set for
table-level locking, you cannot change the locking granularity to row-level locking,
although Derby allows you to use the LOCKSIZE clause in such a situation without
throwing an exception.) To override row-level locking for the specific table, set locking
for the table to TABLE. If you created the table with table-level locking granularity, you
can change locking back to ROW with the LOCKSIZE clause in the ALTER TABLE
STATEMENT. For information about why this is sometimes useful, see Tuning Java DB.

Examples

-- Add a new column with a column-level constraint
-- to an existing table
-- An exception will be thrown if the table
-- contains any rows
-- since the newcol will be initialized to NULL
-- in all existing rows in the table
ALTER TABLE CITIES ADD COLUMN REGION VARCHAR(26)
CONSTRAINT NEW_CONSTRAINT CHECK (REGION IS NOT NULL);

Java DB Reference Manual

26

-- Add a new unique constraint to an existing table
-- An exception will be thrown if duplicate keys are found
ALTER TABLE SAMP.DEPARTMENT
ADD CONSTRAINT NEW_UNIQUE UNIQUE (DEPTNO);

-- add a new foreign key constraint to the
-- Cities table. Each row in Cities is checked
-- to make sure it satisfied the constraints.
-- if any rows don't satisfy the constraint, the
-- constraint is not added
ALTER TABLE CITIES ADD CONSTRAINT COUNTRY_FK
Foreign Key (COUNTRY) REFERENCES COUNTRIES (COUNTRY);

-- Add a primary key constraint to a table
-- First, create a new table
CREATE TABLE ACTIVITIES (CITY_ID INT NOT NULL,
SEASON CHAR(2), ACTIVITY VARCHAR(32) NOT NULL);
-- You will not be able to add this constraint if the
-- columns you are including in the primary key have
-- null data or duplicate values.
ALTER TABLE Activities ADD PRIMARY KEY (city_id, activity);

-- Drop a primary key constraint from the CITIES table

ALTER TABLE Cities DROP CONSTRAINT Cities_PK;
-- Drop a foreign key constraint from the CITIES table
ALTER TABLE Cities DROP CONSTRAINT COUNTRIES_FK;
-- add a DEPTNO column with a default value of 1
ALTER TABLE SAMP.EMP_ACT ADD COLUMN DEPTNO INT DEFAULT 1;
-- increase the width of a VARCHAR column
ALTER TABLE SAMP.EMP_PHOTO ALTER PHOTO_FORMAT SET DATA TYPE VARCHAR(30);
-- change the lock granularity of a table
ALTER TABLE SAMP.SALES LOCKSIZE TABLE;

-- Remove the NOT NULL constraint from the MANAGER column
ALTER TABLE Employees ALTER COLUMN Manager NULL;
-- Add the NOT NULL constraint to the SSN column
ALTER TABLE Employees ALTER COLUMN ssn NOT NULL;

-- Change the default value for the SALARY column
ALTER TABLE Employees ALTER COLUMN Salary DEFAULT 1000.0

Results

An ALTER TABLE statement causes all statements that are dependent on the table
being altered to be recompiled before their next execution. ALTER TABLE is not allowed
if there are any open cursors that reference the table being altered.

CALL (PROCEDURE) statement

The CALL (PROCEDURE) statement is used to call procedures. A call to a procedure
does not return any value.

Syntax

CALL procedure-Name ([expression [, expression]*])

Example

CREATE PROCEDURE SALES.TOTAL_REVENUE(IN S_MONTH INTEGER,
 IN S_YEAR INTEGER, OUT TOTAL DECIMAL(10,2))
 PARAMETER STYLE JAVA READS SQL DATA LANGUAGE JAVA EXTERNAL NAME
 'com.acme.sales.calculateRevenueByMonth';
CALL SALES.TOTAL_REVENUE(?,?,?);

Java DB Reference Manual

27

CREATE statements

Use the Create statements with functions, indexes, procedures, schemas, synonyms,
tables, triggers, and views.

CREATE FUNCTION statement

The CREATE FUNCTION statement allows you to create Java functions, which you can
then use in an expression.

The function owner and the database owner automatically gain the EXECUTE privilege
on the function, and are able to grant this privilege to other users. The EXECUTE
privileges cannot be revoked from the function and database owners.

Syntax

CREATE FUNCTION function-name ([FunctionParameter
 [, FunctionParameter]] *) RETURNS DataType [FunctionElement] *

function-Name

[schemaName.] SQL92Identifier

If schema-Name is not provided, the current schema is the default schema. If a qualified
procedure name is specified, the schema name cannot begin with SYS.

FunctionParameter

[parameter-Name] DataType

PararameterName must be unique within a function.

The syntax of DataType is described in Data types.

Note: Data-types such as BLOB, CLOB, LONG VARCHAR, LONG VARCHAR FOR BIT
DATA, and XML are not allowed as parameters in a CREATE FUNCTION statement.

FunctionElement

 {
| LANGUAGE { JAVA }
| EXTERNAL NAME string
| PARAMETER STYLE JAVA
| { NO SQL | CONTAINS SQL | READS SQL DATA }
| { RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT }
 }

LANGUAGE

JAVA- the database manager will call the function as a public static method in a Java
class.

EXTERNAL NAME string
String describes the Java method to be called when the function is executed, and takes
the following form:

class_name.method_name

The External Name cannot have any extraneous spaces.

PARAMETER STYLE

JAVA - The function will use a parameter-passing convention that conforms to the Java
language and SQL Routines specification. INOUT and OUT parameters will be passed
as single entry arrays to facilitate returning values. Result sets are returned through
additional parameters to the Java method of type java.sql.ResultSet[] that are passed
single entry arrays.

Java DB Reference Manual

28

Derby does not support long column types (for example Long Varchar, BLOB, and so
on). An error will occur if you try to use one of these long column types.

NO SQL, CONTAINS SQL, READS SQL DATA

Indicates whether the function issues any SQL statements and, if so, what type.

CONTAINS SQL
Indicates that SQL statements that neither read nor modify SQL data can be
executed by the function. Statements that are not supported in any function return a
different error.

NO SQL
Indicates that the function cannot execute any SQL statements

READS SQL DATA
Indicates that some SQL statements that do not modify SQL data can be included
in the function. Statements that are not supported in any stored function return a
different error. This is the default value.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
Specifies whether the function is called if any of the input arguments is null. The result is
the null value.
RETURNS NULL ON NULL INPUT

Specifies that the function is not invoked if any of the input arguments is null. The
result is the null value.

CALLED ON NULL INPUT
Specifies that the function is invoked if any or all input arguments are null. This
specification means that the function must be coded to test for null argument values.
The function can return a null or non-null value. This is the default setting.

The function elements may appear in any order, but each type of element can only
appear once. A function definition must contain these elements:

• LANGUAGE
• PARAMETER STYLE
• EXTERNAL NAME

Example

CREATE FUNCTION TO_DEGREES(RADIANS DOUBLE) RETURNS DOUBLE
PARAMETER STYLE JAVA NO SQL LANGUAGE JAVA
EXTERNAL NAME 'java.lang.Math.toDegrees'

CREATE INDEX statement

A CREATE INDEX statement creates an index on a table. Indexes can be on one or
more columns in the table.

Syntax

CREATE [UNIQUE] INDEX index-Name
ON table-Name (Simple-column-Name [ASC | DESC]
 [, Simple-column-Name [ASC | DESC]] *)

The maximum number of columns for an index key in Derby is 16.

An index name cannot exceed 128 characters.

A column must not be named more than once in a single CREATE INDEX statement.
Different indexes can name the same column, however.

Derby can use indexes to improve the performance of data manipulation statements (see
Tuning Java DB). In addition, UNIQUE indexes provide a form of data integrity checking.

Index names are unique within a schema. (Some database systems allow different tables
in a single schema to have indexes of the same name, but Derby does not.) Both index

Java DB Reference Manual

29

and table are assumed to be in the same schema if a schema name is specified for one
of the names, but not the other. If schema names are specified for both index and table,
an exception will be thrown if the schema names are not the same. If no schema name is
specified for either table or index, the current schema is used.

By default, Derby uses the ascending order of each column to create the index.
Specifying ASC after the column name does not alter the default behavior. The DESC
keyword after the column name causes Derby to use descending order for the column
to create the index. Using the descending order for a column can help improve the
performance of queries that require the results in mixed sort order or descending order
and for queries that select the minimum or maximum value of an indexed column.

If a qualified index name is specified, the schema name cannot begin with SYS.

Indexes and constraints

Unique, primary key, and foreign key constraints generate indexes that enforce or "back"
the constraint (and are thus sometimes called backing indexes). If a column or set
of columns has a UNIQUE or PRIMARY KEY constraint on it, you can not create an
index on those columns. Derby has already created it for you with a system-generated
name. System-generated names for indexes that back up constraints are easy to find
by querying the system tables if you name your constraint. Adding a PRIMARY KEY or
UNIQUE constraint when an existing UNIQUE index exists on the same set of columns
will result in two physical indexes on the table for the same set of columns. One index is
the original UNIQUE index and one is the backing index for the new constraint.

To find out the name of the index that backs a constraint called FLIGHTS_PK:

SELECT CONGLOMERATENAME FROM SYS.SYSCONGLOMERATES,
SYS.SYSCONSTRAINTS WHERE
SYS.SYSCONGLOMERATES.TABLEID = SYSCONSTRAINTS.TABLEID
AND CONSTRAINTNAME = 'FLIGHTS_PK'

CREATE INDEX OrigIndex ON Flights(orig_airport);
-- money is usually ordered from greatest to least,
-- so create the index using the descending order
CREATE INDEX PAY_DESC ON SAMP.EMPLOYEE (SALARY);
-- use a larger page size for the index
call
 SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY('derby.storage.pageSize','8192');
CREATE INDEX IXSALE ON SAMP.SALES (SALES);
call
 SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY('derby.storage.pageSize',NULL);

Page size and key size
Note: The size of the key columns in an index must be equal to or smaller than half the
page size. If the length of the key columns in an existing row in a table is larger than
half the page size of the index, creating an index on those key columns for the table
will fail. This error only occurs when creating an index if an existing row in the table fails
the criteria. After an index is created, inserts may fail if the size of their associated key
exceeds the criteria.

Statement dependency system

Prepared statements that involve SELECT, INSERT, UPDATE, UPDATE WHERE
CURRENT, DELETE, and DELETE WHERE CURRENT on the table referenced by the
CREATE INDEX statement are invalidated when the index is created. Open cursors on
the table are not affected.

CREATE PROCEDURE statement

The CREATE PROCEDURE statement allows you to create Java stored procedures,
which you can then call using the CALL PROCEDURE statement.

Java DB Reference Manual

30

The procedure owner and the database owner automatically gain the EXECUTE privilege
on the procedure, and are able to grant this privilege to other users. The EXECUTE
privileges cannot be revoked from the procedure and database owners.

Syntax

CREATE PROCEDURE procedure-Name ([ProcedureParameter
 [, ProcedureParameter]] *)
[ProcedureElement] *

procedure-Name

[schemaName.] SQL92Identifier

If schema-Name is not provided, the current schema is the default schema. If a qualified
procedure name is specified, the schema name cannot begin with SYS.

ProcedureParameter

[{ IN | OUT | INOUT }] [parameter-Name] DataType

The default value for a parameter is IN. ParameterName must be unique within a
procedure.

The syntax of DataType is described in Data types.

Note: Data-types such as BLOB, CLOB, LONG VARCHAR, LONG VARCHAR FOR BIT
DATA, and XML are not allowed as parameters in a CREATE PROCEDURE statement.

ProcedureElement

 {
| [DYNAMIC] RESULT SETS INTEGER
| LANGUAGE { JAVA }
| EXTERNAL NAME string
| PARAMETER STYLE JAVA
| { NO SQL | MODIFIES SQL DATA | CONTAINS SQL | READS SQL DATA }
 }

DYNAMIC RESULT SETS integer

Indicates the estimated upper bound of returned result sets for the procedure. Default is
no (zero) dynamic result sets.

LANGUAGE

JAVA- the database manager will call the procedure as a public static method in a Java
class.

EXTERNAL NAME string
String describes the Java method to be called when the procedure is executed, and takes
the following form:

class_name.method_name

The External Name cannot have any extraneous spaces.

PARAMETER STYLE

JAVA - The procedure will use a parameter-passing convention that conforms to the
Java language and SQL Routines specification. INOUT and OUT parameters will be
passed as single entry arrays to facilitate returning values. Result sets are returned
through additional parameters to the Java method of type java.sql.ResultSet [] that are
passed single entry arrays.

Derby does not support long column types (for example Long Varchar, BLOB, and so
on). An error will occur if you try to use one of these long column types.

Java DB Reference Manual

31

NO SQL, CONTAINS SQL, READS SQL DATA, MODIFIES SQL DATA

Indicates whether the stored procedure issues any SQL statements and, if so, what type.

CONTAINS SQL
Indicates that SQL statements that neither read nor modify SQL data can be
executed by the stored procedure. Statements that are not supported in any stored
procedure return a different error. MODIFIES SQL DATA is the default value.

NO SQL
Indicates that the stored procedure cannot execute any SQL statements

READS SQL DATA
Indicates that some SQL statements that do not modify SQL data can be included
in the stored procedure. Statements that are not supported in any stored procedure
return a different error.

MODIFIES SQL DATA
Indicates that the stored procedure can execute any SQL statement except
statements that are not supported in stored procedures.

The procedure elements may appear in any order, but each type of element can only
appear once. A procedure definition must contain these elements:

• LANGUAGE
• PARAMETER STYLE
• EXTERNAL NAME

Example

CREATE PROCEDURE SALES.TOTAL_REVENUE(IN S_MONTH INTEGER,
IN S_YEAR INTEGER, OUT TOTAL DECIMAL(10,2))
PARAMETER STYLE JAVA READS SQL DATA LANGUAGE JAVA EXTERNAL NAME
'com.acme.sales.calculateRevenueByMonth'

CREATE SCHEMA statement

A schema is a way to logically group objects in a single collection and provide a unique
namespace for objects.

Syntax

CREATE SCHEMA { [schemaName AUTHORIZATION user-name] | [schemaName] |

[AUTHORIZATION user-name] }

The CREATE SCHEMA statement is used to create a schema. A schema name cannot
exceed 128 characters. Schema names must be unique within the database.

CREATE SCHEMA examples
To create a schema for airline-related tables and give the authorization ID anita access
to all of the objects that use the schema, use the following syntax:

CREATE SCHEMA FLIGHTS AUTHORIZATION anita

To create a schema employee-related tables, use the following syntax:

CREATE SCHEMA EMP

To create a schema that uses the same name as the authorization ID takumi, use the
following syntax:

CREATE SCHEMA AUTHORIZATION takumi

To create a table called availability in the EMP and FLIGHTS schemas, use the
following syntax:

CREATE TABLE FLIGHTS.AVAILABILITY

Java DB Reference Manual

32

 (FLIGHT_ID CHAR(6) NOT NULL, SEGMENT_NUMBER INT NOT NULL,
 FLIGHT_DATE DATE NOT NULL, ECONOMY_SEATS_TAKEN INT,
 BUSINESS_SEATS_TAKEN INT, FIRSTCLASS_SEATS_TAKEN INT,
 CONSTRAINT FLT_AVAIL_PK
 PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER, FLIGHT_DATE))

CREATE TABLE EMP.AVAILABILITY
 (HOTEL_ID INT NOT NULL, BOOKING_DATE DATE NOT NULL, ROOMS_TAKEN INT,
 CONSTRAINT HOTELAVAIL_PK PRIMARY KEY (HOTEL_ID, BOOKING_DATE))

CREATE SYNONYM statement

Use the CREATE SYNONYM statement to provide an alternate name for a table or
a view that is present in the same schema or another schema. You can also create
synonyms for other synonyms, resulting in nested synonyms. A synonym can be used
instead of the original qualified table or view name in SELECT, INSERT, UPDATE,
DELETE or LOCK TABLE statements. You can create a synonym for a table or a view
that doesn't exist, but the target table or view must be present before the synonym can
be used.

Synonyms share the same namespace as tables or views. You cannot create a synonym
with the same name as a table that already exists in the same schema. Similarly, you
cannot create a table or view with a name that matches a synonym already present.

A synonym can be defined for a table/view that does not exist when you create
the synonym. If the table or view doesn't exist, you will receive a warning message
(SQLSTATE 01522). The referenced object must be present when you use a synonym in
a DML statement.

You can create a nested synonym (a synonym for another synonym), but any attempt
to create a synonym that results in a circular reference will return an error message
(SQLSTATE 42916).

Synonyms cannot be defined in system schemas. All schemas starting with 'SYS' are
considered system schemas and are reserved by Derby.

A synonym cannot be defined on a temporary table. Attempting to define a synonym on a
temporary table will return an error message (SQLSTATE XCL51).

Syntax

CREATE SYNONYM synonym-Name FOR { view-Name | table-Name }

The synonym-Name in the statement represents the synonym name you are giving the
target table or view, while the view-Name or table-Name represents the original name of
the target table or view.

Example
CREATE SYNONYM SAMP.T1 FOR SAMP.TABLEWITHLONGNAME
CREATE TABLE statement

A CREATE TABLE statement creates a table. Tables contain columns and constraints,
rules to which data must conform. Table-level constraints specify a column or columns.
Columns have a data type and can specify column constraints (column-level constraints).

The table owner and the database owner automatically gain the following privileges on
the table and are able to grant these privileges to other users:

• INSERT
• SELECT
• REFERENCES
• TRIGGER
• UPDATE

These privileges cannot be revoked from the table and database owners.

Java DB Reference Manual

33

For information about constraints, see CONSTRAINT clause.

You can specify a default value for a column. A default value is the value to be inserted
into a column if no other value is specified. If not explicitly specified, the default value of a
column is NULL. See Column default.

You can specify storage properties such as page size for a table by calling the
SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY system procedure.

If a qualified table name is specified, the schema name cannot begin with SYS.

Syntax

There are two different variants of the CREATE TABLE statement, depending on whether
you are specifying the column definitions and constraints, or whether you are modeling
the columns after the results of a query expression:

CREATE TABLE table-Name
 {
 ({column-definition | Table-level constraint}
 [, {column-definition | Table-level constraint}] *)
 |
 [(column-name [, column-name] *)]
 AS query-expression
 WITH NO DATA
 }

Example

CREATE TABLE HOTELAVAILABILITY
 (HOTEL_ID INT NOT NULL, BOOKING_DATE DATE NOT NULL,
 ROOMS_TAKEN INT DEFAULT 0, PRIMARY KEY (HOTEL_ID, BOOKING_DATE));
-- the table-level primary key definition allows you to
-- include two columns in the primary key definition
PRIMARY KEY (hotel_id, booking_date))
-- assign an identity column attribute to an INTEGER
-- column, and also define a primary key constraint
-- on the column
CREATE TABLE PEOPLE
 (PERSON_ID INT NOT NULL GENERATED ALWAYS AS IDENTITY
 CONSTRAINT PEOPLE_PK PRIMARY KEY, PERSON VARCHAR(26));
-- assign an identity column attribute to a SMALLINT
-- column with an initial value of 5 and an increment value
-- of 5.
CREATE TABLE GROUPS
 (GROUP_ID SMALLINT NOT NULL GENERATED ALWAYS AS IDENTITY
 (START WITH 5, INCREMENT BY 5), ADDRESS VARCHAR(100), PHONE
 VARCHAR(15));

Note: For more examples of CREATE TABLE statements using the various constraints,
see CONSTRAINT clause.

CREATE TABLE ... AS ...

With the alternate form of the CREATE TABLE statement, the column names and/or the
column data types can be specified by providing a query. The columns in the query result
are used as a model for creating the columns in the new table.

If no column names are specified for the new table, then all the columns in the result of
the query expression are used to create same-named columns in the new table, of the
corresponding data type(s). If one or more column names are specified for the new table,
then the same number of columns must be present in the result of the query expression;
the data types of those columns are used for the corresponding columns of the new
table.

The WITH NO DATA clause specifies that the data rows which result from evaluating
the query expression are not used; only the names and data types of the columns in the

Java DB Reference Manual

34

query result are used. The WITH NO DATA clause must be specified; in a future release,
Derby may be modified to allow the WITH DATA clause to be provided, which would
indicate that the results of the query expression should be inserted into the newly-created
table. In the current release, however, only the WITH NO DATA form of the statement is
accepted.

Example

-- create a new table using all the columns and data types
-- from an existing table:
CREATE TABLE T3 AS SELECT * FROM T1 WITH NO DATA;
-- create a new table, providing new names for the columns, but
-- using the data types from the columns of an existing table:
CREATE TABLE T3 (A,B,C,D,E) AS SELECT * FROM T1 WITH NO DATA;
-- create a new table, providing new names for the columns,
-- using the data types from the indicated columns of an existing table:
CREATE TABLE T3 (A,B,C) AS SELECT V,DP,I FROM T1 WITH NO DATA;
-- This example shows that the columns in the result of the
-- query expression may be unnamed expressions, but their data
-- types can still be used to provide the data types for the
-- corresponding named columns in the newly-created table:
CREATE TABLE T3 (X,Y) AS SELECT 2*I,2.0*F FROM T1 WITH NO DATA;

column-definition:

Simple-column-NameDataType
 [Column-level-constraint]*
 [[WITH] DEFAULT { ConstantExpression | NULL }
 |generated-column-spec]
 [Column-level-constraint]*

The syntax of Data-Type is described in Data types.

The syntaxes of Column-level-constraint and Table-level constraint are described in
CONSTRAINT clause.

Column default

For the definition of a default value, a ConstantExpression is an expression that does not
refer to any table. It can include constants, date-time special registers, current schemas,
users, and null.

generated-column-spec:

[GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY
[(START WITH IntegerConstant
[,INCREMENT BY IntegerConstant])]]]

Identity column attributes

For SMALLINT, INT, and BIGINT columns with identity attributes, Derby automatically
assigns increasing integer values to the column. Identity column attributes behave like
other defaults in that when an insert statement does not specify a value for the column,
Derby automatically provides the value. However, the value is not a constant; Derby
automatically increments the default value at insertion time.

The IDENTITY keyword can only be specified if the data type associated with the column
is one of the following exact integer types.

• SMALLINT
• INT
• BIGINT

There are two kinds of identity columns in Derby: those which are GENERATED
ALWAYS and those which are GENERATED BY DEFAULT.
GENERATED ALWAYS

Java DB Reference Manual

35

An identity column that is GENERATED ALWAYS will increment the default value
on every insertion and will store the incremented value into the column. Unlike other
defaults, you cannot insert a value directly into or update an identity column that
is GENERATED ALWAYS. Instead, either specify the DEFAULT keyword when
inserting into the identity column, or leave the identity column out of the insertion
column list altogether. For example:

create table greetings
 (i int generated always as identity, ch char(50));
insert into greetings values (DEFAULT, 'hello');
insert into greetings(ch) values ('bonjour');

Automatically generated values in a GENERATED ALWAYS identity column are
unique. Creating an identity column does not create an index on the column.

GENERATED BY DEFAULT

An identity column that is GENERATED BY DEFAULT will only increment and use
the default value on insertions when no explicit value is given. Unlike GENERATED
ALWAYS columns, you can specify a particular value in an insertion statement to be
used instead of the generated default value.

To use the generated default, either specify the DEFAULT keyword when inserting
into the identity column, or just leave the identity column out of the insertion column
list. To specify a value, included it in the insertion statement. For example:

create table greetings
 (i int generated by default as identity, ch char(50));
-- specify value "1":
insert into greetings values (1, 'hi');
-- use generated default
insert into greetings values (DEFAULT, 'salut');
-- use generated default
insert into greetings(ch) values ('bonjour');

Note that unlike a GENERATED ALWAYS column, a GENERATED BY DEFAULT
column does not guarantee uniqueness. Thus, in the above example, the hi and
salut rows will both have an identity value of "1", because the generated column
starts at "1" and the user-specified value was also "1". To prevent duplication,
especially when loading or importing data, create the table using the START WITH
value which corresponds to the first identity value that the system should assign.
To check for this condition and disallow it, you can use a primary key or unique
constraint on the GENERATED BY DEFAULT identity column.

By default, the initial value of an identity column is 1, and the amount of the increment is
1. You can specify non-default values for both the initial value and the interval amount
when you define the column with the key words STARTS WITH and INCREMENT BY.
And if you specify a negative number for the increment value, Derbydecrements the
value with each insert. If this value is 0, or positive, Derby increments the value with each
insert.

The maximum and minimum values allowed in identity columns are determined by
the data type of the column. Attempting to insert a value outside the range of values
supported by the data type raises an exception.
Table 1. Maximum and Minimum Values for Columns with Generated Column
Specs

Data type Maximum Value Minimum Value

SMALLINT 32767
(java.lang.Short.MAX_VALUE)

-32768
(java.lang.Short.MIN_VALUE)

Java DB Reference Manual

36

Data type Maximum Value Minimum Value

INT 2147483647
(java.lang.Integer.MAX_VALUE)

-2147483648
(java.lang.Integer.MIN_VALUE)

BIGINT 9223372036854775807
(java.lang.Long.MAX_VALUE)

-9223372036854775808
(java.lang.Long.MIN_VALUE)

Automatically generated values in an identity column are unique. Use a primary key or
unique constraint on a column to guarantee uniqueness. Creating an identity column
does not create an index on the column.

The IDENTITY_VAL_LOCAL function is a non-deterministic function that returns the most
recently assigned value for an identity column. See IDENTITY_VAL_LOCAL function for
more information.

Note: Specify the schema, table, and column name using the same case as those
names are stored in the system tables--that is, all upper case unless you used delimited
identifiers when creating those database objects.

Derby keeps track of the last increment value for a column in a cache. It also stores
the value of what the next increment value will be for the column on disk in the
AUTOINCREMENTVALUE column of the SYS.SYSCOLUMNS system table. Rolling
back a transaction does not undo this value, and thus rolled-back transactions can leave
"gaps" in the values automatically inserted into an identity column. Derby behaves this
way to avoid locking a row in SYS.SYSCOLUMNS for the duration of a transaction and
keeping concurrency high.

When an insert happens within a triggered-SQL-statement, the value inserted by the
triggered-SQL-statement into the identity column is available from ConnectionInfo only
within the trigger code. The trigger code is also able to see the value inserted by the
statement that caused the trigger to fire. However, the statement that caused the trigger
to fire is not able to see the value inserted by the triggered-SQL-statement into the
identity column. Likewise, triggers can be nested (or recursive). An SQL statement can
cause trigger T1 to fire. T1 in turn executes an SQL statement that causes trigger T2 to
fire. If both T1 and T2 insert rows into a table that cause Derby to insert into an identity
column, trigger T1 cannot see the value caused by T2's insert, but T2 can see the value
caused by T1's insert. Each nesting level can see increment values generated by itself
and previous nesting levels, all the way to the top-level SQL statement that initiated the
recursive triggers. You can only have 16 levels of trigger recursion.

Example

create table greetings
 (i int generated by default as identity (START WITH 2, INCREMENT BY 1),
 ch char(50));
-- specify value "1":
insert into greetings values (1, 'hi');
-- use generated default
insert into greetings values (DEFAULT, 'salut');
-- use generated default
insert into greetings(ch) values ('bonjour');

CREATE TRIGGER statement

A trigger defines a set of actions that are executed when a database event occurs on a
specified table. A database event is a delete, insert, or update operation. For example, if
you define a trigger for a delete on a particular table, the trigger's action occurs whenever
someone deletes a row or rows from the table.

Java DB Reference Manual

37

Along with constraints, triggers can help enforce data integrity rules with actions such as
cascading deletes or updates. Triggers can also perform a variety of functions such as
issuing alerts, updating other tables, sending e-mail, and other useful actions.

You can define any number of triggers for a single table, including multiple triggers on the
same table for the same event.

You can create a trigger in any schema where you are the schema owner. To create a
trigger on a table that you do not own, you must be granted the TRIGGER privilege on
that table. The database owner can also create triggers on any table in any schema.

The trigger does not need to reside in the same schema as the table on which the trigger
is defined.

If a qualified trigger name is specified, the schema name cannot begin with SYS.

Syntax

CREATE TRIGGER TriggerName
{ AFTER | NO CASCADE BEFORE }
{ INSERT | DELETE | UPDATE [OF column-Name [, column-Name]*] }
ON table-Name
[ReferencingClause]
[FOR EACH { ROW | STATEMENT }] [MODE DB2SQL]
Triggered-SQL-statement

Before or after: when triggers fire
Triggers are defined as either Before or After triggers.

• Before triggers fire before the statement's changes are applied and before any
constraints have been applied. Before triggers can be either row or statement
triggers (see Statement versus row triggers).

• After triggers fire after all constraints have been satisfied and after the changes
have been applied to the target table. After triggers can be either row or statement
triggers (see Statement versus row triggers).

Insert, delete, or update: what causes the trigger to fire
A trigger is fired by one of the following database events, depending on how you define it
(see Syntax above):

• INSERT
• UPDATE
• DELETE

You can define any number of triggers for a given event on a given table. For update, you
can specify columns.

Referencing old and new values: the referencing clause

Many triggered-SQL-statements need to refer to data that is currently being changed by
the database event that caused them to fire. The triggered-SQL-statement might need to
refer to the new (post-change or "after") values.

Derby provides you with a number of ways to refer to data that is currently being changed
by the database event that caused the trigger to fire. Changed data can be referred
to in the triggered-SQL-statement using transition variables or transition tables. The
referencing clause allows you to provide a correlation name or alias for these transition
variables by specifying OLD/NEW AS correlation-Name .

For example, if you add the following clause to the trigger definition:

REFERENCING OLD AS DELETEDROW

you can then refer to this correlation name in the triggered-SQL-statement:

DELETE FROM HotelAvailability WHERE hotel_id = DELETEDROW.hotel_id

Java DB Reference Manual

38

The OLD and NEW transition variables map to a java.sql.ResultSet with a single row.
Note: Only row triggers (see Statement versus row triggers) can use the transition
variables. INSERT row triggers cannot reference an OLD row. DELETE row triggers
cannot reference a NEW row.

For statement triggers, transition tables serve as a table identifier for the
triggered-SQL-statement or the trigger qualification. The referencing clause allows
you to provide a correlation name or alias for these transition tables by specifying
OLD_TABLE/NEW_TABLE AS correlation-Name

For example:

REFERENCING OLD_TABLE AS DeletedHotels

allows you to use that new identifier (DeletedHotels) in the triggered-SQL-statement:

DELETE FROM HotelAvailability WHERE hotel_id IN
 (SELECT hotel_id FROM DeletedHotels)

The old and new transition tables map to a java.sql.ResultSet with cardinality equivalent
to the number of rows affected by the triggering event.
Note: Only statement triggers (see Statement versus row triggers) can use the transition
tables. INSERT statement triggers cannot reference an OLD table. DELETE statement
triggers cannot reference a NEW table.

The referencing clause can designate only one new correlation or identifier and only one
old correlation or identifier. Row triggers cannot designate an identifier for a transition
table and statement triggers cannot designate a correlation for transition variables.

Statement versus row triggers
You have the option to specify whether a trigger is a statement trigger or a row trigger. If
it is not specified in the CREATE TRIGGER statement via FOR EACH clause, then the
trigger is a statement trigger by default.

• statement triggers

A statement trigger fires once per triggering event and regardless of whether any
rows are modified by the insert, update, or delete event.

• row triggers

A row trigger fires once for each row affected by the triggering event. If no rows are
affected, the trigger does not fire.

Note: An update that sets a column value to the value that it originally contained (for
example, UPDATE T SET C = C) causes a row trigger to fire, even though the value of
the column is the same as it was prior to the triggering event.

Triggered-SQL-statement
The action defined by the trigger is called the triggered-SQL-statement (in Syntax above,
see the last line). It has the following limitations:

• It must not contain any dynamic parameters (?).
• It must not create, alter, or drop the table upon which the trigger is defined.
• It must not add an index to or remove an index from the table on which the trigger is

defined.
• It must not add a trigger to or drop a trigger from the table upon which the trigger is

defined.
• It must not commit or roll back the current transaction or change the isolation level.
• Before triggers cannot have INSERT, UPDATE or DELETE statements as their

action.
• Before triggers cannot call procedures that modify SQL data as their action.

The triggered-SQL-statement can reference database objects other than the table upon
which the trigger is declared. If any of these database objects is dropped, the trigger is

Java DB Reference Manual

39

invalidated. If the trigger cannot be successfully recompiled upon the next execution, the
invocation throws an exception and the statement that caused it to fire will be rolled back.

For more information on triggered-SQL-statements, see the Java DB Developer's Guide.

Order of execution
When a database event occurs that fires a trigger, Derby performs actions in this order:

• It fires No Cascade Before triggers.
• It performs constraint checking (primary key, unique key, foreign key, check).
• It performs the insert, update, or delete.
• It fires After triggers.

When multiple triggers are defined for the same database event for the same table for
the same trigger time (before or after), triggers are fired in the order in which they were
created.

-- Statements and triggers:

CREATE TRIGGER t1 NO CASCADE BEFORE UPDATE ON x
 FOR EACH ROW MODE DB2SQL
 values app.notifyEmail('Jerry', 'Table x is about to be updated');

CREATE TRIGGER FLIGHTSDELETE
 AFTER DELETE ON FLIGHTS
 REFERENCING OLD_TABLE AS DELETEDFLIGHTS
 FOR EACH STATEMENT
 DELETE FROM FLIGHTAVAILABILITY WHERE FLIGHT_ID IN
 (SELECT FLIGHT_ID FROM DELETEDFLIGHTS);

CREATE TRIGGER FLIGHTSDELETE3
 AFTER DELETE ON FLIGHTS
 REFERENCING OLD AS OLD
 FOR EACH ROW
 DELETE FROM FLIGHTAVAILABILITY WHERE FLIGHT_ID = OLD.FLIGHT_ID;

Note: You can find more examples in the Java DB Developer's Guide.

Trigger recursion

The maximum trigger recursion depth is 16.

Related information
Special system functions that return information about the current time or current user are
evaluated when the trigger fires, not when it is created. Such functions include:

• CURRENT_DATE function
• CURRENT_TIME function
• CURRENT_TIMESTAMP function
• CURRENT_USER function
• SESSION_USER function
• USER function

ReferencingClause:

REFERENCING
{
{ OLD | NEW } [AS] correlation-Name [{ OLD | NEW } [AS]
 correlation-Name] |
{ OLD_TABLE | NEW_TABLE } [AS] Identifier [{ OLD_TABLE | NEW_TABLE }
[AS] Identifier]
}

CREATE VIEW statement

Views are virtual tables formed by a query. A view is a dictionary object that you can use
until you drop it. Views are not updatable.

Java DB Reference Manual

40

If a qualified view name is specified, the schema name cannot begin with SYS.

The view owner automatically gains the SELECT privilege on the view. The SELECT
privilege cannot be revoked from the view owner. The database owner automatically
gains the SELECT privilege on the view and is able to grant this privilege to other users.
The SELECT privilege cannot be revoked from the database owner.

The view owner can only grant the SELECT privilege to other users if the view owner
also owns the underlying objects.

If the underlying objects that the view references are not owned by the view owner, the
view owner must be granted the appropriate privileges. For example, if the authorization
ID user2 attempts to create a view called user2.v2 that references table user1.t1
and function user1.f_abs(), then user2 must have the SELECT privilege on table
user1.t1 and the EXECUTE privilege on function user1.f_abs().

The privilege to grant the SELECT privilege cannot be revoked. If a required privilege
on one of the underlying objects that the view references is revoked, then the view is
dropped.

Syntax

CREATE VIEW view-Name
 [(Simple-column-Name [, Simple-column-Name] *)]
AS Query

A view definition can contain an optional view column list to explicitly name the columns
in the view. If there is no column list, the view inherits the column names from the
underlying query. All columns in a view must be uniquely named.

CREATE VIEW SAMP.V1 (COL_SUM, COL_DIFF)
 AS SELECT COMM + BONUS, COMM - BONUS
 FROM SAMP.EMPLOYEE;

CREATE VIEW SAMP.VEMP_RES (RESUME)
 AS VALUES 'Delores M. Quintana', 'Heather A. Nicholls', 'Bruce Adamson';

CREATE VIEW SAMP.PROJ_COMBO
 (PROJNO, PRENDATE, PRSTAFF, MAJPROJ)
 AS SELECT PROJNO, PRENDATE, PRSTAFF, MAJPROJ
 FROM SAMP.PROJECT UNION ALL
SELECT PROJNO, EMSTDATE, EMPTIME, EMPNO
 FROM SAMP.EMP_ACT
 WHERE EMPNO IS NOT NULL;

Statement dependency system
View definitions are dependent on the tables and views referenced within the view
definition. DML (data manipulation language) statements that contain view references
depend on those views, as well as the objects in the view definitions that the views are
dependent on. Statements that reference the view depend on indexes the view uses;
which index a view uses can change from statement to statement based on how the
query is optimized. For example, given:

CREATE TABLE T1 (C1 DOUBLE PRECISION);

CREATE FUNCTION SIN (DATA DOUBLE)
 RETURNS DOUBLE EXTERNAL NAME 'java.lang.Math.sin'
 LANGUAGE JAVA PARAMETER STYLE JAVA;

CREATE VIEW V1 (C1) AS SELECT SIN(C1) FROM T1;

the following SELECT:

SELECT * FROM V1

Java DB Reference Manual

41

is dependent on view V1, table T1, and external scalar function SIN.

DECLARE GLOBAL TEMPORARY TABLE statement

The DECLARE GLOBAL TEMPORARY TABLE statement defines a temporary table for
the current connection.

These tables do not reside in the system catalogs and are not persistent. Temporary
tables exist only during the connection that declared them and cannot be referenced
outside of that connection. When the connection closes, the rows of the table are deleted,
and the in-memory description of the temporary table is dropped.

Temporary tables are useful when:
• The table structure is not known before using an application.
• Other users do not need the same table structure.
• Data in the temporary table is needed while using the application.
• The table can be declared and dropped without holding the locks on the system

catalog.

Syntax

DECLARE GLOBAL TEMPORARY TABLE table-Name
 { column-definition [, column-definition] * }
[ON COMMIT {DELETE | PRESERVE} ROWS]
NOT LOGGED [ON ROLLBACK DELETE ROWS]

table-Name

Names the temporary table. If a schema-Name other than SESSION is specified, an
error will occur (SQLSTATE 428EK). If the schema-Name is not specified, SESSION
is assigned. Multiple connections can define declared global temporary tables with the
same name because each connection has its own unique table descriptor for it.

Using SESSION as the schema name of a physical table will not cause an error, but is
discouraged. The SESSION schema name should be reserved for the temporary table
schema.

column-definition

See column-definition for CREATE TABLE for more information on
column-definition. DECLARE GLOBAL TEMPORARY TABLE does not allow
generated-column-spec in the column-definition.

Data type
Supported data types are:

• BIGINT
• CHAR
• DATE
• DECIMAL
• DOUBLE
• DOUBLE PRECISION
• FLOAT
• INTEGER
• NUMERIC
• REAL
• SMALLINT
• TIME
• TIMESTAMP
• VARCHAR

Java DB Reference Manual

42

ON COMMIT

Specifies the action taken on the global temporary table when a COMMIT operation is
performed.

DELETE ROWS

All rows of the table will be deleted if no hold-able cursor is open on the table. This is
the default value for ON COMMIT. If you specify ON ROLLBACK DELETE ROWS, this
will delete all the rows in the table only if the temporary table was used. ON COMMIT
DELETE ROWS will delete the rows in the table even if the table was not used (if the
table does not have hold-able cursors open on it).

PRESERVE ROWS

The rows of the table will be preserved.

NOT LOGGED

Specifies the action taken on the global temporary table when a rollback operation
is performed. When a ROLLBACK (or ROLLBACK TO SAVEPOINT) operation is
performed, if the table was created in the unit of work (or savepoint), the table will be
dropped. If the table was dropped in the unit of work (or savepoint), the table will be
restored with no rows.

ON ROLLBACK DELETE ROWS

This is the default value for NOT LOGGED. NOT LOGGED [ON ROLLBACK DELETE
ROWS]] specifies the action that is to be taken on the global temporary table when a
ROLLBACK or (ROLLBACK TO SAVEPOINT) operation is performed. If the table data
has been changed, all the rows will be deleted.

Examples

set schema myapp;

create table t1(c11 int, c12 date);

declare global temporary table SESSION.t1(c11 int) not logged;
-- The SESSION qualification is redundant here because temporary
-- tables can only exist in the SESSION schema.

declare global temporary table t2(c21 int) not logged;
-- The temporary table is not qualified here with SESSION because
 temporary
-- tables can only exist in the SESSION schema.

insert into SESSION.t1 values (1);
-- SESSION qualification is mandatory here if you want to use
-- the temporary table, because the current schema is "myapp."

select * from t1;
-- This select statement is referencing the "myapp.t1" physical
-- table since the table was not qualified by SESSION.

Note: Temporary tables can be declared only in the SESSION schema. You should
never declare a physical schema with the SESSION name.
The following is a list of DB2 UDB DECLARE GLOBAL TEMPORARY TABLE functions
that are not supported by Derby:

• IDENTITY column-options
• IDENTITY attribute in copy-options
• AS (fullselect) DEFINITION ONLY
• NOT LOGGED ON ROLLBACK PRESERVE ROWS
• IN tablespace-name

Java DB Reference Manual

43

• PARTITIONING KEY
• WITH REPLACE

Restrictions on Declared Global Temporary Tables

Derby does not support the following features on temporary tables. Some of these
features are specific to temporary tables and some are specific to Derby.

Temporary tables cannot be specified in the following statements:
• ALTER TABLE
• CREATE INDEX
• CREATE SYNONYM
• CREATE TRIGGER
• CREATE VIEW
• GRANT
• LOCK TABLE
• RENAME
• REVOKE

You cannot use the following features with temporary tables:

• Synonyms, triggers and views on SESSION schema tables (including physical
tables and temporary tables)

• Caching statements that reference SESSION schema tables and views
• Temporary tables cannot be specified in referential constraints and primary keys
• Temporary tables cannot be referenced in a triggered-SQL-statement
• Check constraints on columns
• Generated-column-spec
• Importing into temporary tables

If a statement that performs an insert, update, or delete to the temporary table
encounters an error, all the rows of the temporary table are deleted.

The following data types cannot be used with Declared Global Temporary Tables:
• BLOB
• CHAR FOR BIT DATA
• CLOB
• LONG VARCHAR
• LONG VARCHAR FOR BIT DATA
• VARCHAR FOR BIT DATA
• XML

DELETE statement

Syntax

{
 DELETE FROM table-Name
 [WHERE clause] |
 DELETE FROM table-Name WHERE CURRENT OF
}

The first syntactical form, called a searched delete, removes all rows identified by the
table name and WHERE clause.

The second syntactical form, called a positioned delete, deletes the current row of an
open, updatable cursor. For more information about updatable cursors, see SELECT
statement.

Examples

DELETE FROM SAMP.IN_TRAY

Java DB Reference Manual

44

stmt.executeUpdate("DELETE FROM SAMP.IN_TRAY WHERE CURRENT OF " +
 resultSet.getCursorName());

Statement dependency system

A searched delete statement depends on the table being updated, all of its
conglomerates (units of storage such as heaps or indexes), and any other table named
in the WHERE clause. A CREATE or DROP INDEX statement for the target table of a
prepared searched delete statement invalidates the prepared searched delete statement.

The positioned delete statement depends on the cursor and any tables the cursor
references. You can compile a positioned delete even if the cursor has not been opened
yet. However, removing the open cursor with the JDBC close method invalidates the
positioned delete.

A CREATE or DROP INDEX statement for the target table of a prepared positioned
delete invalidates the prepared positioned delete statement.

DROP statements

Use Drop statements with functions, indexes, procedures, schemas, synonyms, tables,
triggers, and views.

DROP FUNCTION statement

Syntax

DROP FUNCTION function-name

Identifies the particular function to be dropped, and is valid only if there is exactly one
function instance with the function-name in the schema. The identified function can have
any number of parameters defined for it. If no function with the indicated name in the
named or implied schema, an error (SQLSTATE 42704) will occur. An error will also
occur if there is more than one specific instance of the function in the named or implied
schema.

DROP INDEX statement

DROP INDEX removes the specified index.

Syntax

DROP INDEX index-Name

DROP INDEX OrigIndex

DROP INDEX DestIndex

Statement dependency system

If there is an open cursor on the table from which the index is dropped, the DROP INDEX
statement generates an error and does not drop the index. Otherwise, statements that
depend on the index's table are invalidated.

DROP PROCEDURE statement

Syntax

DROP PROCEDURE procedure-Name

Identifies the particular procedure to be dropped, and is valid only if there is exactly one
procedure instance with the procedure-name in the schema. The identified procedure can
have any number of parameters defined for it. If no procedure with the indicated name in
the named or implied schema, an error (SQLSTATE 42704) will occur. An error will also

Java DB Reference Manual

45

occur if there is more than one specific instance of the procedure in the named or implied
schema.

DROP SCHEMA statement

The DROP SCHEMA statement drops a schema. The target schema must be empty for
the drop to succeed.

Neither the APP schema (the default user schema) nor the SYS schema can be dropped.

Syntax

DROP SCHEMA schemaName RESTRICT

The RESTRICT keyword enforces the rule that no objects can be defined in the specified
schema for the schema to be deleted from the database. The RESTRICT keyword is
required

-- Drop the SAMP schema
-- The SAMP schema may only be deleted from the database
-- if no objects are defined in the SAMP schema.

DROP SCHEMA SAMP RESTRICT

DROP SYNONYM statement

Drops the specified synonym from a table or view.

Syntax

DROP SYNONYM synonym-Name

DROP TABLE statement

DROP TABLE removes the specified table.

Syntax

DROP TABLE table-Name

Statement dependency system

Triggers, constraints (primary, unique, check and references from the table being
dropped) and indexes on the table are silently dropped. The existence of an open cursor
that references table being dropped cause the DROP TABLE statement to generate an
error, and the table is not dropped.

Dropping a table invalidates statements that depend on the table. (Invalidating a
statement causes it to be recompiled upon the next execution. See Interaction with the
dependency system.)

DROP TRIGGER statement

DROP TRIGGER removes the specified trigger.

Syntax

DROP TRIGGER TriggerName

DROP TRIGGER TRIG1

Statement dependency system

When a table is dropped, all triggers on that table are automatically dropped. (You don't
have to drop a table's triggers before dropping the table.)

DROP VIEW statement

Drops the specified view.

Java DB Reference Manual

46

Syntax

DROP VIEW view-Name

DROP VIEW AnIdentifier

Statement dependency system

Any statements referencing the view are invalidated on a DROP VIEW statement. DROP
VIEW is disallowed if there are any views or open cursors dependent on the view. The
view must be dropped before any objects that it is dependent on can be dropped.

GRANT statement

Use the GRANT statement to give permissions to a specific user or all users to perform
actions on database objects.

The following types of permissions can be granted:
• Delete data from a specific table.
• Insert data into a specific table.
• Create a foreign key reference to the named table or to a subset of columns from a

table.
• Select data from a table, view, or a subset of columns in a table.
• Create a trigger on a table.
• Update data in a table or in a subset of columns in a table.
• Run a specified function or procedure.

Before you issue a GRANT statement, check that the
derby.database.sqlAuthorization property is set to true. The
derby.database.sqlAuthorization property enables the SQL Authorization mode.

You can grant privileges to database objects that you are authorized to grant. See the
CREATE statement for the database object that you want to grant privileges on for more
information.

The syntax that you use for the GRANT statement depends on whether you are granting
privileges to a table or to a routine.

Syntax for tables

GRANT privilege-type ON [TABLE] { table-Name | view-Name } TO grantees

Syntax for routines

GRANT EXECUTE ON { FUNCTION | PROCEDURE } routine-designator TO grantees

privilege-type

 {
 ALL PRIVILEGES |
 DELETE |
 INSERT |
 REFERENCES [column list] |
 SELECT [column list] |
 TRIGGER |
 UPDATE [column list}
 }

Use the DELETE privilege type to grant permission to delete rows from the specified
table.

Use the INSERT privilege type to grant permission to insert rows into the specified table.

Java DB Reference Manual

47

Use the REFERENCES privilege type to grant permission to create a foreign key
reference to the specified table. If a column list is specified with the REFERENCES
privilege, the permission is valid on only the foreign key reference to the specified
columns.

Use the SELECT privilege type to grant permission to perform SELECT statements on
a table or view. If a column list is specified with the SELECT privilege, the permission is
valid on only those columns. If no column list is specified, then the privilege is valid on all
of the columns in the table.

Use the TRIGGER privilege type to grant permission to create a trigger on the specified
table.

Use the UPDATE privilege type to grant permission to use the UPDATE statement on the
specified table. If a column list is specified, the permission applies only to the specified
columns. To update a row using a statement that includes a WHERE clause, you must
have SELECT permission on the columns in the row that you want to update.

grantees

{ authorization ID | PUBLIC } [,{ authorization ID | PUBLIC }] *

You can grant privileges for specific users or for all users. Use the keyword PUBLIC
to specify all users. When PUBLIC is specified, the privileges affect all current and
future users. The privileges granted to PUBLIC and to individual users are independent
privileges. For example, a SELECT privilege on table t is granted to both PUBLIC and to
the authorization ID harry. The SELECT privilege is later revoked from the authorization
ID harry, but Harry can access the table t through the PUBLIC privilege.

routine-designator

{
 function-name | procedure-name
}

Examples
To grant the SELECT privilege on table t to the authorization IDs maria and harry, use
the following syntax:

GRANT SELECT ON TABLE t TO maria,harry

To grant the UPDATE and TRIGGER privileges on table t to the authorization IDs anita
and zhi, use the following syntax:

GRANT UPDATE, TRIGGER ON TABLE t TO anita,zhi

To grant the SELECT privilege on table s.v to all users, use the following syntax:

GRANT SELECT ON TABLE s.v to PUBLIC

To grant the EXECUTE privilege on procedure p to the authorization ID george, use the
following syntax:

GRANT EXECUTE ON PROCEDURE p TO george

INSERT statement

An INSERT statement creates a row or rows and stores them in the named table. The
number of values assigned in an INSERT statement must be the same as the number of
specified or implied columns.

Syntax

Java DB Reference Manual

48

INSERT INTO table-Name
 [(Simple-column-Name [, Simple-column-Name]*)]
 Query

Query can be:
• a SelectExpression
• a VALUES list
• a multiple-row VALUES expression

Single-row and multiple-row lists can include the keyword DEFAULT. Specifying
DEFAULT for a column inserts the column's default value into the column. Another
way to insert the default value into the column is to omit the column from the column
list and only insert values into other columns in the table. For more information see
VALUES Expression.

• UNION expressions

For more information about Query, see Query.

INSERT INTO COUNTRIES
 VALUES ('Taiwan', 'TW', 'Asia')

-- Insert a new department into the DEPARTMENT table,
-- but do not assign a manager to the new department
INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)
 VALUES ('E31', 'ARCHITECTURE', 'E01')
-- Insert two new departments using one statement
-- into the DEPARTMENT table as in the previous example,
-- but do not assign a manager to the new department.
INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)
 VALUES ('B11', 'PURCHASING', 'B01'),
 ('E41', 'DATABASE ADMINISTRATION', 'E01')
-- Create a temporary table MA_EMP_ACT with the
-- same columns as the EMP_ACT table.
-- Load MA_EMP_ACT with the rows from the EMP_ACT
-- table with a project number (PROJNO)
-- starting with the letters 'MA'.
CREATE TABLE MA_EMP_ACT
 (
 EMPNO CHAR(6) NOT NULL,
 PROJNO CHAR(6) NOT NULL,
 ACTNO SMALLINT NOT NULL,
 EMPTIME DEC(5,2),
 EMSTDATE DATE,
 EMENDATE DATE
);

INSERT INTO MA_EMP_ACT
 SELECT * FROM EMP_ACT
 WHERE SUBSTR(PROJNO, 1, 2) = 'MA';
-- Insert the DEFAULT value for the LOCATION column
INSERT INTO DEPARTMENT
 VALUES ('E31', 'ARCHITECTURE', '00390', 'E01', DEFAULT)

Statement dependency system

The INSERT statement depends on the table being inserted into, all of the conglomerates
(units of storage such as heaps or indexes) for that table, and any other table named in
the statement. Any statement that creates or drops an index or a constraint for the target
table of a prepared INSERT statement invalidates the prepared INSERT statement.

LOCK TABLE statement

The LOCK TABLE statement allows you to explicitly acquire a shared or exclusive table
lock on the specified table. The table lock lasts until the end of the current transaction.

To lock a table, you must either be the database owner or the table owner.

Java DB Reference Manual

49

Explicitly locking a table is useful to:
• Avoid the overhead of multiple row locks on a table (in other words, user-initiated

lock escalation)
• Avoid deadlocks

You cannot lock system tables with this statement.

Syntax

LOCK TABLE table-Name IN { SHARE | EXCLUSIVE } MODE

After a table is locked in either mode, a transaction does not acquire any subsequent
row-level locks on a table. For example, if a transaction locks the entire Flights table in
share mode in order to read data, a particular statement might need to lock a particular
row in exclusive mode in order to update the row. However, the previous table-level lock
on the Flights table forces the exclusive lock to be table-level as well.

If the specified lock cannot be acquired because another connection already holds a lock
on the table, a statement-level exception is raised (SQLState X0X02) after the deadlock
timeout period.

Examples
To lock the entire Flights table in share mode to avoid a large number of row locks,
use the following statement:

LOCK TABLE Flights IN SHARE MODE;
SELECT *
FROM Flights
WHERE orig_airport > 'OOO';

You have a transaction with multiple UPDATE statements. Since each of the individual
statements acquires only a few row-level locks, the transaction will not automatically
upgrade the locks to a table-level lock. However, collectively the UPDATE statements
acquire and release a large number of locks, which might result in deadlocks. For this
type of transaction, you can acquire an exclusive table-level lock at the beginning of the
transaction. For example:

LOCK TABLE FlightAvailability IN EXCLUSIVE MODE;
UPDATE FlightAvailability
SET economy_seats_taken = (economy_seats_taken + 2)
WHERE flight_id = 'AA1265' AND flight_date = DATE('2004-03-31');

UPDATE FlightAvailability
SET economy_seats_taken = (economy_seats_taken + 2)
WHERE flight_id = 'AA1265' AND flight_date = DATE('2004-04-11');

UPDATE FlightAvailability
SET economy_seats_taken = (economy_seats_taken + 2)
WHERE flight_id = 'AA1265' AND flight_date = DATE('2004-04-12');

UPDATE FlightAvailability
SET economy_seats_taken = (economy_seats_taken + 2)
WHERE flight_id = 'AA1265' AND flight_date = DATE('2004-04-15');

If a transaction needs to look at a table before updating the table, acquire an exclusive
lock before selecting to avoid deadlocks. For example:

LOCK TABLE Maps IN EXCLUSIVE MODE;
SELECT MAX(map_id) + 1 FROM Maps;
-- INSERT INTO Maps . . .

RENAME statements

Use the Rename statements with indexes, columns, and tables.

Java DB Reference Manual

50

RENAME COLUMN statement

Use the RENAME COLUMN statement to rename a column in a table.

The RENAME COLUMN statement allows you to rename an existing column in an
existing table in any schema (except the schema SYS).

To rename a column, you must either be the database owner or the table owner.

Other types of table alterations are possible; see ALTER TABLE statement for more
information.

Syntax

RENAME COLUMN table-Name.simple-Column-Name TO simple-Column-Name

Examples
To rename the manager column in table employee to supervisor, use the following
syntax:

RENAME COLUMN EMPLOYEE.MANAGER TO SUPERVISOR

You can combine ALTER TABLE and RENAME COLUMN to modify a column's data
type. To change column c1 of table t to the new data type NEWTYPE:

 ALTER TABLE t ADD COLUMN c1_newtype NEWTYPE
 UPDATE t SET c1_newtype = c1
 ALTER TABLE t DROP COLUMN c1
 RENAME COLUMN t.c1_newtype TO c1

Usage notes
Note: If there is a view, trigger, check constraint, or foreign key constraint that
references the column, attempts to rename it will generate an error.
Note: The RENAME COLUMN statement is not allowed if there are any open cursors
that reference the column that is being altered.
Note: If there is an index defined on the column, the column can still be renamed; the
index is automatically updated to refer to the column by its new name
RENAME INDEX statement

This statement allows you to rename an index in the current schema. Users cannot
rename indexes in the SYS schema.

Syntax

RENAME INDEX index-Name TO new-index-Name

RENAME INDEX DESTINDEX TO ARRIVALINDEX

Statement dependency system

RENAME INDEX is not allowed if there are any open cursors that reference the index
being renamed.

RENAME TABLE statement

RENAME TABLE allows you to rename an existing table in any schema (except the
schema SYS).

To rename a table, you must either be the database owner or the table owner.

Syntax

RENAME TABLE table-Name TO new-Table-Name

Java DB Reference Manual

51

If there is a view or foreign key that references the table, attempts to rename it will
generate an error. In addition, if there are any check constraints or triggers on the table,
attempts to rename it will also generate an error.

RENAME TABLE SAMP.EMP_ACT TO EMPLOYEE_ACT

Also see ALTER TABLE statement for more information.

Statement dependency system

If there is an index defined on the table, the table can be renamed.

The RENAME TABLE statement is not allowed if there are any open cursors that
reference the table that is being altered.

REVOKE statement

Use the REVOKE statement to remove permissions from a specific user or from all users
to perform actions on database objects.

The following types of permissions can be revoked:
• Delete data from a specific table.
• Insert data into a specific table.
• Create a foreign key reference to the named table or to a subset of columns from a

table.
• Select data from a table, view, or a subset of columns in a table.
• Create a trigger on a table.
• Update data in a table or in a subset of columns in a table.
• Run a specified routine (function or procedure).

Before you issue a REVOKE statement, check that the
derby.database.sqlAuthorization property is set to true. The
derby.database.sqlAuthorization property enables the SQL Authorization mode.

You can revoke privileges from an object if you are the owner of the object or the
database owner.

The syntax that you use for the REVOKE statement depends on whether you are
revoking privileges to a table or to a routine.

Syntax for tables

REVOKE privilege-type ON [TABLE] { table-Name | view-Name } FROM
 grantees

Revoking a privilege without specifying a column list revokes the privilege for all of the
columns in the table.

Syntax for routines

REVOKE EXECUTE ON { FUNCTION | PROCEDURE } routine-designator FROM
 grantees RESTRICT

You must use the RESTRICT clause on REVOKE statements for routines. The
RESTRICT clause specifies that the EXECUTE privilege cannot be revoked if the
specified routine is used in a view, trigger, or constraint, and the privilege is being
revoked from the owner of the view, trigger, or constraint.

privilege-type

 {
 ALL PRIVILEGES |
 DELETE |

Java DB Reference Manual

52

 INSERT |
 REFERENCES [column list] |
 SELECT [column list] |
 TRIGGER |
 UPDATE [column list}
 }

Use the ALL PRIVILEGES privilege type to revoke all of the permissions from the user for
the specified table.

Use the DELETE privilege type to revoke permission to delete rows from the specified
table.

Use the INSERT privilege type to revoke permission to insert rows into the specified
table.

Use the REFERENCES privilege type to revoke permission to create a foreign key
reference to the specified table. If a column list is specified with the REFERENCES
privilege, the permission is revoked on only the foreign key reference to the specified
columns.

Use the SELECT privilege type to revoke permission to perform SELECT statements on
a table or view. If a column list is specified with the SELECT privilege, the permission is
revoked on only those columns. If no column list is specified, then the privilege is valid on
all of the columns in the table.

Use the TRIGGER privilege type to revoke permission to create a trigger on the specified
table.

Use the UPDATE privilege type to revoke permission to use the UPDATE statement on
the specified table. If a column list is specified, the permission is revoked only on the
specified columns.

grantees

{ authorization ID | PUBLIC } [,{ authorization ID | PUBLIC }] *

You can revoke the privileges from specific users or from all users. Use the keyword
PUBLIC to specify all users. The privileges revoked from PUBLIC and from individual
users are independent privileges. For example, a SELECT privilege on table t is granted
to both PUBLIC and to the authorization ID harry. The SELECT privilege is later
revoked from the authorization ID harry, but the authorization ID harry can access the
table t through the PUBLIC privilege.

Restriction: You cannot revoke the privileges of the owner of an object.

routine-designator

 {
 qualified-name [signature]
 }

Cascading object dependencies

For views, triggers, and constraints, if the privilege on which the object depends on is
revoked, the object is automatically dropped. Derby does not try to determine if you
have other privileges that can replace the privileges that are being revoked. For more
information, see "SQL standard authorization" in the Java DB Developer's Guide.

Limitations

The following limitations apply to the REVOKE statement:

Table-level privileges

Java DB Reference Manual

53

All of the table-level privilege types for a specified grantee and table ID are stored
in one row in the SYSTABLEPERMS system table. For example, when user2 is
granted the SELECT and DELETE privileges on table user1.t1, a row is added to
the SYSTABLEPERMS table. The GRANTEE field contains user2 and the TABLEID
contains user1.t1. The SELECTPRIV and DELETEPRIV fields are set to Y. The
remaining privilege type fields are set to N.

When a grantee creates an object that relies on one of the privilege types, the
Derby engine tracks the dependency of the object on the specific row in the
SYSTABLEPERMS table. For example, user2 creates the view v1 by using the
statement SELECT * FROM user1.t1, the dependency manager tracks the
dependency of view v1 on the row in SYSTABLEPERMS for GRANTEE(user2),
TABLEID(user1.t1). The dependency manager knows only that the view is
dependent on a privilege type in that specific row, but does not track exactly which
privilege type the view is dependent on.

When a REVOKE statement for a table-level privilege is issued for a grantee and
table ID, all of the objects that are dependent on the grantee and table ID are
dropped. For example, if user1 revokes the DELETE privilege on table t1 from
user2, the row in SYSTABLEPERMS for GRANTEE(user2), TABLEID(user1.t1)
is modified by the REVOKE statement. The dependency manager sends a revoke
invalidation message to the view user2.v1 and the view is dropped even though
the view is not dependent on the DELETE privilege for GRANTEE(user2),
TABLEID(user1.t1).

Column-level privileges
Only one type of privilege for a specified grantee and table ID are stored in one
row in the SYSCOLPERMS system table. For example, when user2 is granted the
SELECT privilege on table user1.t1 for columns c12 and c13, a row is added to
the SYSCOLPERMS. The GRANTEE field contains user2, the TABLEID contains
user1.t1, the TYPE field contains S, and the COLUMNS field contains c12, c13.

When a grantee creates an object that relies on the privilege type and the subset
of columns in a table ID, the Derby engine tracks the dependency of the object on
the specific row in the SYSCOLPERMS table. For example, user2 creates the
view v1 by using the statement SELECT c11 FROM user1.t1, the dependency
manager tracks the dependency of view v1 on the row in SYSCOLPERMS for
GRANTEE(user2), TABLEID(user1.t1), TYPE(S). The dependency manager
knows that the view is dependent on the SELECT privilege type, but does not track
exactly which columns the view is dependent on.

When a REVOKE statement for a column-level privilege is issued for a grantee,
table ID, and type, all of the objects that are dependent on the grantee, table ID,
and type are dropped. For example, if user1 revokes the SELECT privilege on
column c12 on table user1.t1 from user2, the row in SYSCOLPERMS for
GRANTEE(user2), TABLEID(user1.t1), TYPE(S) is modified by the REVOKE
statement. The dependency manager sends a revoke invalidation message to the
view user2.v1 and the view is dropped even though the view is not dependent on
the column c12 for GRANTEE(user2), TABLEID(user1.t1), TYPE(S).

Revoke examples
To revoke the SELECT privilege on table t from the authorization IDs maria and harry,
use the following syntax:

REVOKE SELECT ON TABLE t FROM maria,harry

To revoke the UPDATE and TRIGGER privileges on table t from the authorization IDs
anita and zhi, use the following syntax:

REVOKE UPDATE, TRIGGER ON TABLE t FROM anita,zhi

Java DB Reference Manual

54

To revoke the SELECT privilege on table s.v from all users, use the following syntax:

REVOKE SELECT ON TABLE s.v FROM PUBLIC

To revoke the UPDATE privilege on columns c1 and c2 of table s.v from all users, use
the following syntax:

REVOKE UPDATE (c1,c2) ON TABLE s.v FROM PUBLIC

To revoke the EXECUTE privilege on procedure p from the authorization ID george, use
the following syntax:

REVOKE EXECUTE ON PROCEDURE p FROM george RESTRICT

SET statements

Use the Set statements with schemas and to set the current isolation level.

SET ISOLATION statement

The SET ISOLATION statement allows a user to change the isolation level for the user's
connection. Valid levels are SERIALIZABLE, REPEATABLE READ, READ COMMITTED,
and READ UNCOMMITTED.

Issuing this statement always commits the current transaction. The JDBC
java.sql.Connection.setTransactionIsolation method behaves almost identically to this
command, with one exception: if you are using the embedded driver, and if the call to
java.sql.Connection.setTransactionIsolation does not actually change the isolation level
(that is, if it sets the isolation level to its current value), the current transaction is not
committed.

For information about isolation levels, see "Locking, concurrency, and
isolation" in the Java DB Developer's Guide. For information about
the JDBC java.sql.Connection.setTransactionIsolation method, see
java.sql.Connection.setTransactionIsolation method.

Syntax

SET [CURRENT] ISOLATION [=]
{
UR | DIRTY READ | READ UNCOMMITTED
CS | READ COMMITTED | CURSOR STABILITY
RS |
RR | REPEATABLE READ | SERIALIZABLE
RESET
}

set isolation serializable;

SET SCHEMA statement

The SET SCHEMA statement sets the default schema for a connection's session to the
designated schema. The default schema is used as the target schema for all statements
issued from the connection that do not explicitly specify a schema name.

The target schema must exist for the SET SCHEMA statement to succeed. If the schema
doesn't exist an error is returned. See CREATE SCHEMA statement.

The SET SCHEMA statement is not transactional: If the SET SCHEMA statement is part
of a transaction that is rolled back, the schema change remains in effect.

Syntax

SET [CURRENT] SCHEMA [=]
{ schemaName|

Java DB Reference Manual

55

USER | ? | '<string-constant>' } | SET CURRENT SQLID [=]
{
schemaName| USER | ? | '<string-constant>' }

schemaName is an identifier with a maximum length of 128. It is case insensitive unless
enclosed in double quotes. (For example, SYS is equivalent to sYs, SYs, sys, etcetera.)

USER is the current user. If no current user is defined, the current schema defaults the
APP schema. (If a user name was specified upon connection, the user's name is the
default schema for the connection, if a schema with that name exists.)

? is a dynamic parameter specification that can be used in prepared statements. The
SET SCHEMA statement can be prepared once and then executed with different schema
values. The schema values are treated as string constants so they are case sensitive.
For example, to designate the APP schema, use the string "APP" rather than "app".

-- the following are all equivalent and will work
-- assuming a schema called HOTEL
SET SCHEMA HOTEL
SET SCHEMA hotel
SET CURRENT SCHEMA hotel
SET CURRENT SQLID hotel
SET SCHEMA = hotel
SET CURRENT SCHEMA = hotel
SET CURRENT SQLID = hotel
SET SCHEMA "HOTEL" -- quoted identifier
SET SCHEMA 'HOTEL' -- quoted string--This example produces an error
 because
 --lower case hotel won't be found
SET SCHEMA = 'hotel'
 --This example produces an error because SQLID is not
 --allowed without CURRENT
SET SQLID hotel
 -- This sets the schema to the current user id
SET CURRENT SCHEMA USER
// Here's an example of using set schema in an Java program
PreparedStatement ps = conn.PrepareStatement("set schema ?");
ps.setString(1,"HOTEL");
ps.executeUpdate();
... do some work
ps.setString(1,"APP");
ps.executeUpdate();

ps.setString(1,"app"); //error - string is case sensitive
// no app will be found
ps.setNull(1, Types.VARCHAR); //error - null is not allowed

SELECT statement

Syntax

Query
[ORDER BY clause]
[FOR UPDATE clause]
WITH {RR|RS|CS|UR}

A SELECT statement consists of a query with an optional ORDER BY clause and an
optional FOR UPDATE clause. The SELECT statement is so named because the typical
first word of the query construct is SELECT. (Query includes the VALUES expression
and UNION, INTERSECT, and EXCEPT expressions as well as SELECT expressions).

The ORDER BY clause guarantees the ordering of the ResultSet. The FOR UPDATE
clause makes the result set's cursor updatable. The SELECT statement supports the
FOR FETCH ONLY clause. The FOR FETCH ONLY clause is synonymous with the FOR
READ ONLY clause.

Java DB Reference Manual

56

You can set the isolation level in a SELECT statement using the WITH {RR|RS|CS|UR}
syntax.

Example

-- lists the names of the expression
-- SAL+BONUS+COMM as TOTAL_PAY and
-- orders by the new name TOTAL_PAY
SELECT FIRSTNME, SALARY+BONUS+COMM AS TOTAL_PAY
 FROM EMPLOYEE
 ORDER BY TOTAL_PAY
-- creating an updatable cursor with a FOR UPDATE clause
-- to update the start date (PRSTDATE) and the end date (PRENDATE)
-- columns in the PROJECT table
SELECT PROJNO, PRSTDATE, PRENDATE
 FROM PROJECT
 FOR UPDATE OF PRSTDATE, PRENDATE
-- set the isolation level to RR for this statement only
SELECT *
FROM Flights
WHERE flight_id BETWEEN 'AA1111' AND 'AA1112'
WITH RR

A SELECT statement returns a ResultSet. A cursor is a pointer to a specific row in
ResultSet. In Java applications, all ResultSets have an underlying associated SQL
cursor, often referred to as the result set's cursor. The cursor can be updatable,
that is, you can update or delete rows as you step through the ResultSet if the
SELECT statement that generated it and its underlying query meet cursor updatability
requirements, as detailed below. The FOR UPDATE clause can be used to ensure a
compilation check that the SELECT statement meets the requiremments of a updatable
cursors, or to limit the columns that can be updated.
Note: The ORDER BY clause allows you to order the results of the SELECT. Without
the ORDER BY clause, the results are returned in random order.

Requirements for updatable cursors and updatable ResultSets
Only simple, single-table SELECT cursors can be updatable. The SELECT statement
for updatable ResultSets has the same syntax as the SELECT statement for updatable
cursors. To generate updatable cursors:

• The SELECT statement must not include an ORDER BY clause.
• The underlying Query must be a SelectExpression.
• The SelectExpression in the underlying Query must not include:

• DISTINCT
• Aggregates
• GROUP BY clause
• HAVING clause
• ORDER BY clause

• The FROM clause in the underlying Query must not have:
• more than one table in its FROM clause
• anything other than one table name
• SelectExpressions
• subqueries

Note: Cursors are read-only by default. To produce an updatable cursor besides
meeting the requirements listed above, the concurrency mode for the ResultSet must be
ResultSet.CONCUR_UPDATABLE or the SELECT statement must have FOR UPDATE
in the FOR clause (see FOR UPDATE clause).

There is no SQL language statement to assign a name to a cursor. Instead, one can use
the JDBC API to assign names to cursors or retrieve system-generated names. For more
information, see Naming or accessing the name of a cursor in the Java DB Developer's
Guide.

Java DB Reference Manual

57

Statement dependency system

The SELECT depends on all the tables and views named in the query and the
conglomerates (units of storage such as heaps and indexes) chosen for access paths
on those tables. CREATE INDEX does not invalidate a prepared SELECT statement.
A DROP INDEX statement invalidates a prepared SELECT statement if the index is
an access path in the statement. If the SELECT includes views, it also depends on the
dictionary objects on which the view itself depends (see CREATE VIEW statement).

Any prepared UPDATE WHERE CURRENT or DELETE WHERE CURRENT statement
against a cursor of a SELECT depends on the SELECT. Removing a SELECT through
a java.sql.Statement.close request invalidates the UPDATE WHERE CURRENT or
DELETE WHERE CURRENT.

The SELECT depends on all aliases used in the query. Dropping an alias invalidates a
prepared SELECT statement if the statement uses the alias.

UPDATE statement

Syntax

{
 UPDATE table-Name
 SET column-Name = Value
 [, column-Name = Value}]*
 [WHERE clause] |
 UPDATE table-Name
 SET column-Name = Value
 [, column-Name = Value]*
 WHERE CURRENT OF
}

where Value is defined as follows:

Expression | DEFAULT

The first syntactical form, called a searched update, updates the value of one or more
columns for all rows of the table for which the WHERE clause evaluates to TRUE.

The second syntactical form, called a positioned update, updates one or more columns
on the current row of an open, updatable cursor. If columns were specified in the FOR
UPDATE clause of the SELECT statement used to generate the cursor, only those
columns can be updated. If no columns were specified or the select statement did not
include a FOR UPDATE clause, all columns may be updated.

Specifying DEFAULT for the update value sets the value of the column to the default
defined for that table.

Example

-- All the employees except the manager of
-- department (WORKDEPT) 'E21' have been temporarily reassigned.
-- Indicate this by changing their job (JOB) to NULL and their pay
-- (SALARY, BONUS, COMM) values to zero in the EMPLOYEE table.
UPDATE EMPLOYEE
 SET JOB=NULL, SALARY=0, BONUS=0, COMM=0
 WHERE WORKDEPT = 'E21' AND JOB <> 'MANAGER'

-- PROMOTE the job (JOB) of employees without a specific job title to
 MANAGER
UPDATE EMPLOYEE
 SET JOB = 'MANAGER'
 WHERE JOB IS NULL;
// Increase the project staffing (PRSTAFF) by 1.5 for all projects
stmt.executeUpdate("UPDATE PROJECT SET PRSTAFF = "

Java DB Reference Manual

58

"PRSTAFF + 1.5" +
"WHERE CURRENT OF" + ResultSet.getCursorName());

-- Change the job (JOB) of employee number (EMPNO) '000290' in the
 EMPLOYEE table
-- to its DEFAULT value which is NULL
UPDATE EMPLOYEE
 SET JOB = DEFAULT
 WHERE EMPNO = '000290'

Statement dependency system

A searched update statement depends on the table being updated, all of its
conglomerates (units of storage such as heaps or indexes), all of its constraints, and
any other table named in the WHERE clause or SET expressions. A CREATE or DROP
INDEX statement or an ALTER TABLE statement for the target table of a prepared
searched update statement invalidates the prepared searched update statement.

The positioned update statement depends on the cursor and any tables the cursor
references. You can compile a positioned update even if the cursor has not been opened
yet. However, removing the open cursor with the JDBC close method invalidates the
positioned update.

A CREATE or DROP INDEX statement or an ALTER TABLE statement for the target
table of a prepared positioned update invalidates the prepared positioned update
statement.

Dropping an alias invalidates a prepared update statement if the latter statement uses the
alias.

Dropping or adding triggers on the target table of the update invalidates the update
statement.

SQL clauses

CONSTRAINT clause

A CONSTRAINT clause is an optional part of a CREATE TABLE statement or ALTER
TABLE statement. A constraint is a rule to which data must conform. Constraint names
are optional.

A CONSTRAINT can be one of the following:
• a column-level constraint

Column-level constraints refer to a single column in the table and do not specify a
column name (except check constraints). They refer to the column that they follow.

• a table-level constraint

Table-level constraints refer to one or more columns in the table. Table-level
constraints specify the names of the columns to which they apply. Table-level
CHECK constraints can refer to 0 or more columns in the table.

Column constraints include:
• NOT NULL

Specifies that this column cannot hold NULL values (constraints of this type are not
nameable).

• PRIMARY KEY

Specifies the column that uniquely identifies a row in the table. The identified
columns must be defined as NOT NULL.

Java DB Reference Manual

59

Note: If you attempt to add a primary key using ALTER TABLE and any of the
columns included in the primary key contain null values, an error will be generated
and the primary key will not be added. See ALTER TABLE statement for more
information.

• UNIQUE

Specifies that values in the column must be unique. NULL values are not allowed.
• FOREIGN KEY

Specifies that the values in the column must correspond to values in a referenced
primary key or unique key column or that they are NULL.

• CHECK

Specifies rules for values in the column.

Table constraints include:
• PRIMARY KEY

Specifies the column or columns that uniquely identify a row in the table. NULL
values are not allowed.

• UNIQUE

Specifies that values in the columns must be unique. The identified columns must
be defined as NOT NULL.

• FOREIGN KEY

Specifies that the values in the columns must correspond to values in referenced
primary key or unique columns or that they are NULL.

Note: If the foreign key consists of multiple columns, and any column is NULL,
the whole key is considered NULL. The insert is permitted no matter what is on the
non-null columns.

• CHECK

Specifies a wide range of rules for values in the table.

Column constraints and table constraints have the same function; the difference is
in where you specify them. Table constraints allow you to specify more than one
column in a PRIMARY KEY, UNIQUE, CHECK, or FOREIGN KEY constraint definition.
Column-level constraints (except for check constraints) refer to only one column.

Syntax

Primary key and unique constraints

A primary key defines the set of columns that uniquely identifies rows in a table.

When you create a primary key constraint, none of the columns included in the primary
key can have NULL constraints; that is, they must not permit NULL values.

ALTER TABLE ADD PRIMARY KEY allows you to include existing columns in a
primary key if they were first defined as NOT NULL. NULL values are not allowed. If the
column(s) contain NULL values, the system will not add the primary key constraint. See
ALTER TABLE statement for more information.

A table can have at most one PRIMARY KEY constraint, but can have multiple UNIQUE
constraints.

Foreign key constraints

Foreign keys provide a way to enforce the referential integrity of a database. A foreign
key is a column or group of columns within a table that references a key in some other
table (or sometimes, though rarely, the same table). The foreign key must always include

Java DB Reference Manual

60

the columns of which the types exactly match those in the referenced primary key or
unique constraint.

For a table-level foreign key constraint in which you specify the columns in the table that
make up the constraint, you cannot use the same column more than once.

If there is a column list in the ReferencesSpecification (a list of columns in the referenced
table), it must correspond either to a unique constraint or to a primary key constraint
in the referenced table. The ReferencesSpecification can omit the column list for the
referenced table if that table has a declared primary key.

If there is no column list in the ReferencesSpecification and the referenced table has no
primary key, a statement exception is thrown. (This means that if the referenced table
has only unique keys, you must include a column list in the ReferencesSpecification.)

A foreign key constraint is satisfied if there is a matching value in the referenced unique
or primary key column. If the foreign key consists of multiple columns, the foreign key
value is considered NULL if any of its columns contains a NULL.
Note: It is possible for a foreign key consisting of multiple columns to allow one of
the columns to contain a value for which there is no matching value in the referenced
columns, per the SQL-92 standard. To avoid this situation, create NOT NULL constraints
on all of the foreign key's columns.

Foreign key constraints and DML

When you insert into or update a table with an enabled foreign key constraint, Derby
checks that the row does not violate the foreign key constraint by looking up the
corresponding referenced key in the referenced table. If the constraint is not satisfied,
Derby rejects the insert or update with a statement exception.

When you update or delete a row in a table with a referenced key (a primary or unique
constraint referenced by a foreign key), Derby checks every foreign key constraint
that references the key to make sure that the removal or modification of the row does
not cause a constraint violation. If removal or modification of the row would cause a
constraint violation, the update or delete is not permitted and Derby throws a statement
exception.

Derby performs constraint checks at the time the statement is executed, not when the
transaction commits.

Backing indexes

UNIQUE, PRIMARY KEY, and FOREIGN KEY constraints generate indexes that
enforce or "back" the constraint (and are sometimes called backing indexes). UNIQUE
and PRIMARY KEY constraints generate unique indexes. FOREIGN KEY constraints
generate non-unique indexes. Therefore, if a column or set of columns has a UNIQUE,
PRIMARY KEY, or FOREIGN KEY constraint on it, you do not need to create an index on
those columns for performance. Derby has already created it for you. See Indexes and
constraints.

These indexes are available to the optimizer for query optimization (see CREATE INDEX
statement) and have system-generated names.

You cannot drop backing indexes with a DROP INDEX statement; you must drop the
constraint or the table.

Check constraints

A check constraint can be used to specify a wide range of rules for the contents of
a table. A search condition (which is a boolean expression) is specified for a check
constraint. This search condition must be satisfied for all rows in the table. The search
condition is applied to each row that is modified on an INSERT or UPDATE at the time of
the row modification. The entire statement is aborted if any check constraint is violated.

Java DB Reference Manual

61

Requirements for search condition

If a check constraint is specified as part of a column-definition, a column reference
can only be made to the same column. Check constraints specified as part of a table
definition can have column references identifying columns previously defined in the
CREATE TABLE statement.

The search condition must always return the same value if applied to the same values.
Thus, it cannot contain any of the following:

• Dynamic parameters (?)
• Date/Time Functions (CURRENT_DATE, CURRENT_TIME,

CURRENT_TIMESTAMP)
• Subqueries
• User Functions (such as USER, SESSION_USER, CURRENT_USER)

Referential actions

You can specify an ON DELETE clause and/or an ON UPDATE clause, followed by the
appropriate action (CASCADE, RESTRICT, SET NULL, or NO ACTION) when defining
foreign keys. These clauses specify whether Derby should modify corresponding foreign
key values or disallow the operation, to keep foreign key relationships intact when a
primary key value is updated or deleted from a table.

You specify the update and delete rule of a referential constraint when you define the
referential constraint.

The update rule applies when a row of either the parent or dependent table is updated.
The choices are NO ACTION and RESTRICT.

When a value in a column of the parent table's primary key is updated and the update
rule has been specified as RESTRICT, Derby checks dependent tables for foreign
key constraints. If any row in a dependent table violates a foreign key constraint, the
transaction is rolled back.

If the update rule is NO ACTION, Derby checks the dependent tables for foreign key
constraints after all deletes have been executed but before triggers have been executed.
If any row in a dependent table violates a foreign key constraint, the statement is
rejected.

When a value in a column of the dependent table is updated, and that value is part of a
foreign key, NO ACTION is the implicit update rule. NO ACTION means that if a foreign
key is updated with a non-null value, the update value must match a value in the parent
table's primary key when the update statement is completed. If the update does not
match a value in the parent table's primary key, the statement is rejected.

The delete rule applies when a row of the parent table is deleted and that row has
dependents in the dependent table of the referential constraint. If rows of the dependent
table are deleted, the delete operation on the parent table is said to be propagated to
the dependent table. If the dependent table is also a parent table, the action specified
applies, in turn, to its dependents.

The choices are NO ACTION, RESTRICT, CASCADE, or SET NULL. SET NULL can be
specified only if some column of the foreign key allows null values.

If the delete rule is:

NO ACTION, Derby checks the dependent tables for foreign key constraints after all
deletes have been executed but before triggers have been executed. If any row in a
dependent table violates a foreign key constraint, the statement is rejected.

RESTRICT, Derby checks dependent tables for foreign key constraints. If any row in a
dependent table violates a foreign key constraint, the transaction is rolled back.

Java DB Reference Manual

62

CASCADE, the delete operation is propagated to the dependent table (and that table's
dependents, if applicable).

SET NULL, each nullable column of the dependent table's foreign key is set to null.
(Again, if the dependent table also has dependent tables, nullable columns in those
tables' foreign keys are also set to null.)

Each referential constraint in which a table is a parent has its own delete rule; all
applicable delete rules are used to determine the result of a delete operation. Thus, a
row cannot be deleted if it has dependents in a referential constraint with a delete rule of
RESTRICT or NO ACTION. Similarly, a row cannot be deleted if the deletion cascades to
any of its descendants that are dependents in a referential constraint with the delete rule
of RESTRICT or NO ACTION.

Deleting a row from the parent table involves other tables. Any table involved in a delete
operation on the parent table is said to be delete-connected to the parent table. The
delete can affect rows of these tables in the following ways:

• If the delete rule is RESTRICT or NO ACTION, a dependent table is involved in the
operation but is not affected by the operation. (That is, Derby checks the values
within the table, but does not delete any values.)

• If the delete rule is SET NULL, a dependent table's rows can be updated when a
row of the parent table is the object of a delete or propagated delete operation.

• If the delete rule is CASCADE, a dependent table's rows can be deleted when a
parent table is the object of a delete.

• If the dependent table is also a parent table, the actions described in this list apply,
in turn, to its dependents.

Examples

-- column-level primary key constraint named OUT_TRAY_PK:
CREATE TABLE SAMP.OUT_TRAY
 (
 SENT TIMESTAMP,
 DESTINATION CHAR(8),
 SUBJECT CHAR(64) NOT NULL CONSTRAINT OUT_TRAY_PK PRIMARY KEY,
 NOTE_TEXT VARCHAR(3000)
);

-- the table-level primary key definition allows you to
-- include two columns in the primary key definition:
CREATE TABLE SAMP.SCHED
 (
 CLASS_CODE CHAR(7) NOT NULL,
 DAY SMALLINT NOT NULL,
 STARTING TIME,
 ENDING TIME,
 PRIMARY KEY (CLASS_CODE, DAY)
);

-- Use a column-level constraint for an arithmetic check
-- Use a table-level constraint
-- to make sure that a employee's taxes does not
-- exceed the bonus
CREATE TABLE SAMP.EMP
 (
 EMPNO CHAR(6) NOT NULL CONSTRAINT EMP_PK PRIMARY KEY,
 FIRSTNME CHAR(12) NOT NULL,
 MIDINIT vARCHAR(12) NOT NULL,
 LASTNAME VARCHAR(15) NOT NULL,
 SALARY DECIMAL(9,2) CONSTRAINT SAL_CK CHECK (SALARY >= 10000),
 BONUS DECIMAL(9,2),
 TAX DECIMAL(9,2),
 CONSTRAINT BONUS_CK CHECK (BONUS > TAX)
);

Java DB Reference Manual

63

-- use a check constraint to allow only appropriate
-- abbreviations for the meals
CREATE TABLE FLIGHTS
 (
 FLIGHT_ID CHAR(6) NOT NULL ,
 SEGMENT_NUMBER INTEGER NOT NULL ,
 ORIG_AIRPORT CHAR(3),
 DEPART_TIME TIME,
 DEST_AIRPORT CHAR(3),
 ARRIVE_TIME TIME,
 MEAL CHAR(1) CONSTRAINT MEAL_CONSTRAINT
 CHECK (MEAL IN ('B', 'L', 'D', 'S')),
 PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER)
);

CREATE TABLE METROPOLITAN
 (
 HOTEL_ID INT NOT NULL CONSTRAINT HOTELS_PK PRIMARY KEY,
 HOTEL_NAME VARCHAR(40) NOT NULL,
 CITY_ID INT CONSTRAINT METRO_FK REFERENCES CITIES
);

-- create a table with a table-level primary key constraint
-- and a table-level foreign key constraint
CREATE TABLE FLTAVAIL
 (
 FLIGHT_ID CHAR(6) NOT NULL,
 SEGMENT_NUMBER INT NOT NULL,
 FLIGHT_DATE DATE NOT NULL,
 ECONOMY_SEATS_TAKEN INT,
 BUSINESS_SEATS_TAKEN INT,
 FIRSTCLASS_SEATS_TAKEN INT,
 CONSTRAINT FLTAVAIL_PK PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER),
 CONSTRAINT FLTS_FK
 FOREIGN KEY (FLIGHT_ID, SEGMENT_NUMBER)
 REFERENCES Flights (FLIGHT_ID, SEGMENT_NUMBER)
);
-- add a unique constraint to a column
ALTER TABLE SAMP.PROJECT
ADD CONSTRAINT P_UC UNIQUE (PROJNAME);

-- create a table whose city_id column references the
-- primary key in the Cities table
-- using a column-level foreign key constraint
CREATE TABLE CONDOS
 (
 CONDO_ID INT NOT NULL CONSTRAINT hotels_PK PRIMARY KEY,
 CONDO_NAME VARCHAR(40) NOT NULL,
 CITY_ID INT CONSTRAINT city_foreign_key
 REFERENCES Cities ON DELETE CASCADE ON UPDATE RESTRICT
);

Statement dependency system

INSERT and UPDATE statements depend on all constraints on the target table.
DELETEs depend on unique, primary key, and foreign key constraints. These statements
are invalidated if a constraint is added to or dropped from the target table.

Column-level-constraint

{
 NOT NULL |
 [[CONSTRAINT constraint-Name]
 {
 CHECK (searchCondition) |
 {
 PRIMARY KEY |
 UNIQUE |
 REFERENCES clause
 }

Java DB Reference Manual

64

 }
}

Table-level constraint

[CONSTRAINT constraint-Name]
{
 CHECK (searchCondition) |
 {
 PRIMARY KEY (Simple-column-Name [, Simple-column-Name]*) |
 UNIQUE (Simple-column-Name [, Simple-column-Name]*) |
 FOREIGN KEY (Simple-column-Name
 [, Simple-column-Name]*
)
REFERENCES clause
 }
}

References specification

REFERENCES table-Name [(Simple-column-Name [, Simple-column-Name]*)
]
[ON DELETE {NO ACTION | RESTRICT | CASCADE | SET NULL}]
 [ON UPDATE {NO ACTION | RESTRICT }]
|
[ON UPDATE {NO ACTION | RESTRICT }] [ON DELETE
 {NO ACTION | RESTRICT | CASCADE | SET NULL}]

searchCondition

A searchCondition is any Boolean expression that meets the requirements specified in
Requirements for search condition.

If a constraint-Name is not specified, Derby generates a unique constraint name (for
either column or table constraints).

FOR UPDATE clause

The FOR UPDATE clause is an optional part of a SELECT statement. Cursors are
read-only by default. The FOR UPDATE clause specifies that the cursor should be
updatable, and enforces a check during compilation that the SELECT statement meets
the requirements for an updatable cursor. For more information about updatability, see
Requirements for Updatable Cursors.

Syntax

FOR
{
 READ ONLY | FETCH ONLY |
 UPDATE [OF Simple-column-Name [, Simple-column-Name]*]
}

Simple-column-Name refers to the names visible for the table specified in the FROM
clause of the underlying query.

Note: The use of the FOR UPDATE clause is not mandatory to obtain an
updatable JDBC ResultSet. As long as the statement used to generate the JDBC
ResultSet meets the requirements for updatable cursor, it is sufficient for the
JDBC Statement that generates the JDBC ResultSet to have concurrency mode
ResultSet.CONCUR_UPDATABLE for the ResultSet to be updatable.

The optimizer is able to use an index even if the column in the index is being updated.
For more information about how indexes affect cursors, see Tuning Java DB.

SELECT RECEIVED, SOURCE, SUBJECT, NOTE_TEXT FROM SAMP.IN_TRAY FOR UPDATE

Java DB Reference Manual

65

FROM clause

The FROM clause is a mandatory clause in a SelectExpression. It specifies the tables
(TableExpression) from which the other clauses of the query can access columns for use
in expressions.

Syntax

FROM TableExpression [, TableExpression] *

SELECT Cities.city_id
FROM Cities
WHERE city_id < 5
-- other types of TableExpressions
SELECT TABLENAME, ISINDEX
FROM SYS.SYSTABLES T, SYS.SYSCONGLOMERATES C
WHERE T.TABLEID = C.TABLEID
ORDER BY TABLENAME, ISINDEX
-- force the join order
SELECT *
FROM Flights, FlightAvailability
WHERE FlightAvailability.flight_id = Flights.flight_id
AND FlightAvailability.segment_number = Flights.segment_number
AND Flights.flight_id < 'AA1115'
-- a TableExpression can be a joinOperation. Therefore
-- you can have multiple join operations in a FROM clause
SELECT COUNTRIES.COUNTRY, CITIES.CITY_NAME, FLIGHTS.DEST_AIRPORT
FROM COUNTRIES LEFT OUTER JOIN CITIES
ON COUNTRIES.COUNTRY_ISO_CODE = CITIES.COUNTRY_ISO_CODE
LEFT OUTER JOIN FLIGHTS
ON Cities.AIRPORT = FLIGHTS.DEST_AIRPORT

GROUP BY clause

A GROUP BY clause, part of a SelectExpression, groups a result into subsets that have
matching values for one or more columns. In each group, no two rows have the same
value for the grouping column or columns. NULLs are considered equivalent for grouping
purposes.

You typically use a GROUP BY clause in conjunction with an aggregate expression.

Syntax

GROUP BY column-Name [, column-Name] *

column-Name must be a column from the current scope of the query; there can be no
columns from a query block outside the current scope. For example, if a GROUP BY
clause is in a subquery, it cannot refer to columns in the outer query.

SelectItems in the SelectExpression with a GROUP BY clause must contain only
aggregates or grouping columns.

-- find the average flying_times of flights grouped by
-- airport
SELECT AVG (flying_time), orig_airport
FROM Flights
GROUP BY orig_airport

SELECT MAX(city_name), region
FROM Cities, Countries
WHERE Cities.country_ISO_code = Countries.country_ISO_code
GROUP BY region
-- group by an a smallint
SELECT ID, AVG(SALARY)
FROM SAMP.STAFF

Java DB Reference Manual

66

GROUP BY ID
-- Get the AVGSALARY and EMPCOUNT columns, and the DEPTNO column using
 the AS clause
-- And group by the WORKDEPT column using the correlation name OTHERS
SELECT OTHERS.WORKDEPT AS DEPTNO,
AVG(OTHERS.SALARY) AS AVGSALARY,
COUNT(*) AS EMPCOUNT
FROM SAMP.EMPLOYEE OTHERS
GROUP BY OTHERS.WORKDEPT

HAVING clause

A HAVING clause restricts the results of a GROUP BY in a SelectExpression. The
HAVING clause is applied to each group of the grouped table, much as a WHERE clause
is applied to a select list. If there is no GROUP BY clause, the HAVING clause is applied
to the entire result as a single group. The SELECT clause cannot refer directly to any
column that does not have a GROUP BY clause. It can, however, refer to constants,
aggregates, and special registers.

Syntax

HAVING searchCondition

The searchCondition, which is a specialized booleanExpression, can contain only
grouping columns (see GROUP BY clause), columns that are part of aggregate
expressions, and columns that are part of a subquery. For example, the following query is
illegal, because the column SALARY is not a grouping column, it does not appear within
an aggregate, and it is not within a subquery:

-- SELECT COUNT(*)
-- FROM SAMP.STAFF
-- GROUP BY ID
-- HAVING SALARY > 15000

Aggregates in the HAVING clause do not need to appear in the SELECT list. If the
HAVING clause contains a subquery, the subquery can refer to the outer query block if
and only if it refers to a grouping column.

-- Find the total number of economy seats taken on a flight,
-- grouped by airline,
-- only when the group has at least 2 records.
SELECT SUM(ECONOMY_SEATS_TAKEN), AIRLINE_FULL
FROM FLIGHTAVAILABILITY, AIRLINES
WHERE SUBSTR(FLIGHTAVAILABILITY.FLIGHT_ID, 1, 2) = AIRLINE
GROUP BY AIRLINE_FULL
HAVING COUNT(*) > 1

ORDER BY clause

The ORDER BY clause is an optional element of a SELECT statement. An ORDER BY
clause allows you to specify the order in which rows appear in the ResultSet.

Syntax

ORDER BY { column-Name | ColumnPosition | Expression }
 [ASC | DESC]
 [, column-Name | ColumnPosition | Expression
 [ASC | DESC]] *

column-Name
Refers to the names visible from the SelectItems in the underlying query of the
SELECT statement. The column-Name that you specify in the ORDER BY clause
does not need to be the SELECT list.

Java DB Reference Manual

67

ColumnPosition
An integer that identifies the number of the column in the SelectItems in the
underlying query of the SELECT statement. ColumnPosition must be greater than 0
and not greater than the number of columns in the result table. In other words, if you
want to order by a column, that column must be specified in the SELECT list.

Expression
A sort key expression, such as numeric, string, and datetime expressions. Expression
can also be a row value expression such as a scalar subquery or case expression.

ASC
Specifies that the results should be returned in ascending order. If the order is not
specified, ASC is the default.

DESC
Specifies that the results should be returned in descending order.

Notes
• If SELECT DISTINCT is specified or if the SELECT statement contains a GROUP

BY clause, the ORDER BY columns must be in the SELECT list.
• An ORDER BY clause prevents a SELECT statement from being an updatable

cursor. For more information, see Requirements for updatable cursors and
updatable ResultSets. For example, if an INTEGER column contains integers,
NULL is considered greater than 1 for purposes of sorting. In other words, NULL
values are sorted high.

Example using a correlation name

You can sort the result set by a correlation name, if the correlation name is specified in
the select list. For example, to return from the CITIES database all of the entries in the
CITY_NAME and COUNTRY columns, where the COUNTRY column has the correlation
name NATION, you specify this SELECT statement:

SELECT CITY_NAME, COUNTRY AS NATION
 FROM CITIES
 ORDER BY NATION

Example using a numeric expression
You can sort the result set by a numeric expression, for example:

SELECT name, salary, bonus FROM employee
 ORDER BY salary+bonus

In this example, the salary and bonus columns are DECIMAL data types.

Example using a function
You can sort the result set by invoking a function, for example:

SELECT i, len FROM measures
 ORDER BY sin(i)

WHERE clause

A WHERE clause is an optional part of a SelectExpression,DELETE statement, or
UPDATE statement. The WHERE clause lets you select rows based on a boolean
expression. Only rows for which the expression evaluates to TRUE are returned in the
result, or, in the case of a DELETE statement, deleted, or, in the case of an UPDATE
statement, updated.

Syntax

WHERE Boolean expression

Java DB Reference Manual

68

Boolean expressions are allowed in the WHERE clause. Most of the general expressions
listed in Table of general expressions, can result in a boolean value.

In addition, there are the more common boolean expressions. Specific boolean operators
listed in Table 10, take one or more operands; the expressions return a boolean value.

Example

-- find the flights where no business-class seats have
-- been booked
SELECT *
FROM FlightAvailability
WHERE business_seats_taken IS NULL
OR business_seats_taken = 0
-- Join the EMP_ACT and EMPLOYEE tables
-- select all the columns from the EMP_ACT table and
-- add the employee's surname (LASTNAME) from the EMPLOYEE table
-- to each row of the result.
SELECT SAMP.EMP_ACT.*, LASTNAME
 FROM SAMP.EMP_ACT, SAMP.EMPLOYEE
 WHERE EMP_ACT.EMPNO = EMPLOYEE.EMPNO
-- Determine the employee number and salary of sales representatives
-- along with the average salary and head count of their departments.
-- This query must first create a new-column-name specified in the AS
 clause
-- which is outside the fullselect (DINFO)
-- in order to get the AVGSALARY and EMPCOUNT columns,
-- as well as the DEPTNO column that is used in the WHERE clause
SELECT THIS_EMP.EMPNO, THIS_EMP.SALARY, DINFO.AVGSALARY, DINFO.EMPCOUNT
 FROM EMPLOYEE THIS_EMP,
 (SELECT OTHERS.WORKDEPT AS DEPTNO,
 AVG(OTHERS.SALARY) AS AVGSALARY,
 COUNT(*) AS EMPCOUNT
 FROM EMPLOYEE OTHERS
 GROUP BY OTHERS.WORKDEPT
)AS DINFO
 WHERE THIS_EMP.JOB = 'SALESREP'
 AND THIS_EMP.WORKDEPT = DINFO.DEPTNO

WHERE CURRENT OF clause

The WHERE CURRENT OF clause is a clause in some UPDATE and DELETE
statements. It allows you to perform positioned updates and deletes on updatable
cursors. For more information about updatable cursors, see SELECT statement.

Syntax

WHERE CURRENT OF cursor-Name

Statement s = conn.createStatement();
s.setCursorName("AirlinesResults");
ResultSet rs = conn.executeQuery(
 "SELECT Airline, basic_rate " +
 "FROM Airlines FOR UPDATE OF basic_rate");
Statement s2 = conn.createStatement();
s2.executeUpdate("UPDATE Airlines SET basic_rate = basic_rate " +
 "+ .25 WHERE CURRENT OF AirlinesResults");

SQL expressions
Syntax for many statements and expressions includes the term Expression, or a term for
a specific kind of expression such as TableSubquery. Expressions are allowed in these
specified places within statements.

Java DB Reference Manual

69

Some locations allow only a specific type of expression or one with a specific property.
If not otherwise specified, an expression is permitted anywhere the word Expression
appears in the syntax. This includes:

• ORDER BY clause
• SelectExpression
• UPDATE statement (SET portion)
• VALUES Expression
• WHERE clause

Of course, many other statements include these elements as building blocks, and so
allow expressions as part of these elements.

The following tables list all the possible SQL expressions and indicate where the
expressions are allowed.

General expressions
General expressions are expressions that might result in a value of any type.
Table 2. Table of general expressions

Expression Type Explanation

Column reference A column-Name that references the value of the column made visible to the expression containing the Column reference.

You must qualify the column-Name by the table name or correlation name if it is ambiguous.

The qualifier of a column-Name must be the correlation name, if a correlation name is given to a table that is in a FROM clause. The
table name is no longer visible as a column-Name qualifier once it has been aliased by a correlation name.

Allowed in SelectExpressions, UPDATE statements, and the WHERE clauses of data manipulation statements.

Constant Most built-in data types typically have constants associated with them (as shown in Data types).

NULL NULL is an untyped constant representing the unknown value.

Allowed in CAST expressions or in INSERT VALUES lists and UPDATE SET clauses. Using it in a CAST expression gives it a
specific data type.

Dynamic parameter A dynamic parameter is a parameter to an SQL statement for which the value is not specified when the statement is created. Instead,
the statement has a question mark (?) as a placeholder for each dynamic parameter. See Dynamic parameters.

Dynamic parameters are permitted only in prepared statements. You must specify values for them before the prepared statement is
executed. The values specified must match the types expected.

Allowed anywhere in an expression where the data type can be easily deduced. See Dynamic parameters.

CAST expression Lets you specify the type of NULL or of a dynamic parameter or convert a value to another type. See CAST function.

Scalar subquery Subquery that returns a single row with a single column. See ScalarSubquery.

Table subquery Subquery that returns more than one column and more than one row. See TableSubquery.

Allowed as a tableExpression in a FROM clause and with EXISTS, IN, and quantified comparisons.

Conditional expression A conditional expression chooses an expression to evaluate based on a boolean test.

Boolean expressions

Boolean expressions are expressions that result in boolean values. Most general
expressions can result in boolean values. Boolean expressions commonly used in a
WHERE clause are made of operands operated on by SQL operators. See SQL Boolean
Operators.

Numeric expressions

Java DB Reference Manual

70

Numeric expressions are expressions that result in numeric values. Most of the general
expressions can result in numeric values. Numeric values have one of the following
types:

• BIGINT
• DECIMAL
• DOUBLE PRECISION
• INTEGER
• REAL
• SMALLINT

Table 3. Table of numeric expressions

Expression Type Explanation

+, -, *, /, unary + and - expressions Evaluate the expected math operation on the operands. If both operands are the same type, the result type is not promoted, so the
division operator on integers results in an integer that is the truncation of the actual numeric result. When types are mixed, they are
promoted as described in Data types.

Unary + is a noop (i.e., +4 is the same as 4). Unary - is the same as multiplying the value by -1, effectively changing its sign.

AVG Returns the average of a set of numeric values. AVG function

SUM Returns the sum of a set of numeric values. SUM function

LENGTH Returns the number of characters in a character or bit string. See LENGTH function.

LOWER See LCASE or LOWER function.

COUNT Returns the count of a set of values. See COUNT function, COUNT(*) function.

Character expressions
Character expressions are expressions that result in a CHAR or VARCHAR value. Most
general expressions can result in a CHAR or VARCHAR value.
Table 4. Table of character expressions

Expression Type Explanation

A CHAR or VARCHAR value that uses wildcards. The wildcards % and _ make a character string a pattern against which the LIKE operator can look for a match.

Concatenation expression In a concatenation expression, the concatenation operator, "||", concatenates its right operand to the end of its left operand. Operates
on character and bit strings. See Concatenation operator.

Built-in string functions The built-in string functions act on a String and return a string. See LTRIM function, LCASE or LOWER function, RTRIM function,
TRIM function, SUBSTR function, and UCASE or UPPER function.

USER functions User functions return information about the current user as a String. See CURRENT_USER function, SESSION_USER function, and .

Date and time expressions
A date or time expression results in a DATE, TIME, or TIMESTAMP value. Most of the
general expressions can result in a date or time value.
Table 5. Table of date and time expressions

Expression type Explanation

CURRENT_DATE Returns the current date. See CURRENT_DATE function.

CURRENT_TIME Returns the current time. See CURRENT_TIME function.

CURRENT_TIMESTAMP Returns the current timestamp. See CURRENT_TIMESTAMP function.

SelectExpression

Java DB Reference Manual

71

A SelectExpression is the basic SELECT-FROM-WHERE construct used to build a table
value based on filtering and projecting values from other tables.

Syntax

SELECT [DISTINCT | ALL] SelectItem [
 , SelectItem
]*
FROM clause
[WHERE clause]
[GROUP BY clause]
[HAVING clause]

SelectItem:

{
 * |
 { table-Name | correlation-Name } .* |
 Expression [AS Simple-column-Name]
}

The SELECT clause contains a list of expressions and an optional quantifier that is
applied to the results of the FROM clause and the WHERE clause. If DISTINCT is
specified, only one copy of any row value is included in the result. Nulls are considered
duplicates of one another for the purposes of DISTINCT. If no quantifier, or ALL, is
specified, no rows are removed from the result in applying the SELECT clause (ALL is
the default).

A SelectItem projects one or more result column values for a table result being
constructed in a SelectExpression.

The result of the FROM clause is the cross product of the FROM items. The WHERE
clause can further qualify this result.

The WHERE clause causes rows to be filtered from the result based on a boolean
expression. Only rows for which the expression evaluates to TRUE are returned in the
result.

The GROUP BY clause groups rows in the result into subsets that have matching values
for one or more columns. GROUP BY clauses are typically used with aggregates.

If there is a GROUP BY clause, the SELECT clause must contain only aggregates or
grouping columns. If you want to include a non-grouped column in the SELECT clause,
include the column in an aggregate expression. For example:

-- List head count of each department,
-- the department number (WORKDEPT), and the average departmental salary
 (SALARY)
-- for all departments in the EMPLOYEE table.
-- Arrange the result table in ascending order by average departmental
 salary.
SELECT WORKDEPT, AVG(SALARY)
 FROM EMPLOYEE
 GROUP BY WORKDEPT
 ORDER BY 1

If there is no GROUP BY clause, but a SelectItem contains an aggregate not in a
subquery, the query is implicitly grouped. The entire table is the single group.

The HAVING clause restricts a grouped table, specifying a search condition (much like a
WHERE clause) that can refer only to grouping columns or aggregates from the current
scope. The HAVING clause is applied to each group of the grouped table. If the HAVING
clause evaluates to TRUE, the row is retained for further processing. If the HAVING
clause evaluates to FALSE or NULL, the row is discarded. If there is a HAVING clause
but no GROUP BY, the table is implicitly grouped into one group for the entire table.

Java DB Reference Manual

72

Derby processes a SelectExpression in the following order:
• FROM clause
• WHERE clause
• GROUP BY (or implicit GROUP BY)
• HAVING clause
• SELECT clause

The result of a SelectExpression is always a table.

When a query does not have a FROM clause (when you are constructing a value, not
getting data out of a table), you use a VALUES statement, not a SelectExpression. For
example:

VALUES CURRENT_TIMESTAMP

See VALUES Expression.

The * wildcard

* expands to all columns in the tables in the associated FROM clause.

table-Name.* and correlation-Name.* expand to all columns in the identified table. That
table must be listed in the associated FROM clause.

Naming columns

You can name a SelectItem column using the AS clause. If a column of a SelectItem
is not a simple ColumnReference expression or named with an AS clause, it is given a
generated unique name.

These column names are useful in several cases:
• They are made available on the JDBC ResultSetMetaData.
• They are used as the names of the columns in the resulting table when the

SelectExpression is used as a table subquery in a FROM clause.
• They are used in the ORDER BY clause as the column names available for sorting.

-- this example shows SELECT-FROM-WHERE
-- with an ORDER BY clause
-- and correlation-Names for the tables
SELECT CONSTRAINTNAME, COLUMNNAME
FROM SYS.SYSTABLES t, SYS.SYSCOLUMNS col,
SYS.SYSCONSTRAINTS cons, SYS.SYSCHECKS checks
WHERE t.TABLENAME = 'FLIGHTS' AND t.TABLEID = col.
REFERENCEID AND t.TABLEID = cons.TABLEID
AND cons.CONSTRAINTID = checks.CONSTRAINTID
ORDER BY CONSTRAINTNAME
-- This example shows the use of the DISTINCT clause
SELECT DISTINCT ACTNO
FROM EMP_ACT
-- This example shows how to rename an expression
-- Using the EMPLOYEE table, list the department number (WORKDEPT) and
-- maximum departmental salary (SALARY) renamed as BOSS
-- for all departments whose maximum salary is less than the
-- average salary in all other departments.
SELECT WORKDEPT AS DPT, MAX(SALARY) AS BOSS
 FROM EMPLOYEE EMP_COR
 GROUP BY WORKDEPT
 HAVING MAX(SALARY) < (SELECT AVG(SALARY)
 FROM EMPLOYEE
 WHERE NOT WORKDEPT = EMP_COR.WORKDEPT)
 ORDER BY BOSS

TableExpression

Java DB Reference Manual

73

A TableExpression specifies a table or view in a FROM clause. It is the source from
which a SelectExpression selects a result.

A correlation name can be applied to a table in a TableExpression so that its columns
can be qualified with that name. If you do not supply a correlation name, the table name
qualifies the column name. When you give a table a correlation name, you cannot use
the table name to qualify columns. You must use the correlation name when qualifying
column names.

No two items in the FROM clause can have the same correlation name, and no
correlation name can be the same as an unqualified table name specified in that FROM
clause.

In addition, you can give the columns of the table new names in the AS clause. Some
situations in which this is useful:

• When a VALUES expression is used as a TableSubquery, since there is no other
way to name the columns of a VALUES expression.

• When column names would otherwise be the same as those of columns in other
tables; renaming them means you don't have to qualify them.

The Query in a TableSubquery appearing in a FromItem can contain multiple columns
and return multiple rows. See TableSubquery.

For information about the optimizer overrides you can specify, see Tuning Java DB.

Syntax

{
TableOrViewExpression | JOIN operation
}

Example

-- SELECT from a Join expression
SELECT E.EMPNO, E.LASTNAME, M.EMPNO, M.LASTNAME
 FROM EMPLOYEE E LEFT OUTER JOIN
 DEPARTMENT INNER JOIN EMPLOYEE M
 ON MGRNO = M.EMPNO
 ON E.WORKDEPT = DEPTNO

TableOrViewExpression

{table-Name |view-Name}
 [[AS] correlation-Name
 [(Simple-column-Name [, Simple-column-Name]*)]]]

VALUES expression

The VALUES expression allows construction of a row or a table from other values. A
VALUES expression can be used in all the places where a query can, and thus can be
used in any of the following ways:

• As a statement that returns a ResultSet
• Within expressions and statements wherever subqueries are permitted
• As the source of values for an INSERT statement (in an INSERT statement, you

normally use a VALUES expression when you do not use a SelectExpression)

Syntax

{
 VALUES (Value {, Value }*)
 [, (Value {, Value }*)]* |
 VALUES Value [, Value]*
 }

Java DB Reference Manual

74

where Value is defined as

Expression | DEFAULT

The first form constructs multi-column rows. The second form constructs single-column
rows, each expression being the value of the column of the row.

The DEFAULT keyword is allowed only if the VALUES expression is in an INSERT
statement. Specifying DEFAULT for a column inserts the column's default value into the
column. Another way to insert the default value into the column is to omit the column from
the column list and only insert values into other columns in the table.

Examples

-- 3 rows of 1 column
VALUES (1),(2),(3)
-- 3 rows of 1 column
VALUES 1, 2, 3
-- 1 row of 3 columns
VALUES (1, 2, 3)
-- 3 rows of 2 columns
VALUES (1,21),(2,22),(3,23)
-- constructing a derived table
VALUES ('orange', 'orange'), ('apple', 'red'),
('banana', 'yellow')
-- Insert two new departments using one statement into the DEPARTMENT
 table,
-- but do not assign a manager to the new department.
INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)
 VALUES ('B11', 'PURCHASING', 'B01'),
 ('E41', 'DATABASE ADMINISTRATION', 'E01')
-- insert a row with a DEFAULT value for the MAJPROJ column
INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP, PRSTDATE,
 MAJPROJ)
VALUES ('PL2101', 'ENSURE COMPAT PLAN', 'B01', '000020', CURRENT_DATE,
 DEFAULT)

-- using a built-in function
VALUES CURRENT_DATE
-- getting the value of an arbitrary expression
VALUES (3*29, 26.0E0/3)
-- getting a value returned by a built-in function
values char(1)

Expression precedence

Precedence of operations from highest to lowest is:
• (), ?, Constant (including sign), NULL, ColumnReference, ScalarSubquery, CAST
• LENGTH, CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, and

other built-ins
• unary + and -
• *, /, || (concatenation)
• binary + and -
• comparisons, quantified comparisons, EXISTS, IN, IS NULL, LIKE, BETWEEN, IS
• NOT
• AND
• OR

You can explicitly specify precedence by placing expressions within parentheses.
An expression within parentheses is evaluated before any operations outside the
parentheses are applied to it.

Example

Java DB Reference Manual

75

(3+4)*9
(age < 16 OR age > 65) AND employed = TRUE

Boolean expressions

Boolean expressions are allowed in WHERE clauses and in check constraints. Boolean
expressions in check constraints have limitations not noted here; see CONSTRAINT
clause for more information. Boolean expressions in a WHERE clause have a highly
liberal syntax; see WHERE clause, for example.

A boolean expression can include a boolean operator or operators. These are listed in
SQL Boolean Operators.
Table 6. SQL Boolean Operators

Operator Explanation and Example Syntax

AND, OR, NOT Evaluate any operand(s) that are
boolean expressions

(orig_airport = 'SFO') OR
 (dest_airport = 'GRU')
 -- returns true

{
 Expression AND
 Expression |
 Expression OR
 Expression |
 NOT Expression
}

Comparisons <, =, >, <=, >=, <> are applicable to all
of the built-in types.

DATE('1998-02-26') <
 DATE('1998-03-01')
-- returns true

Expression
{
 < |
 = |
 > |
 <= |
 >= |
 <>
}
Expression

IS NULL, IS NOT
NULL

Test whether the result of an
expression is null or not.

WHERE MiddleName IS NULL

Expression IS [NOT
]
 NULL

LIKE Attempts to match a character
expression to a character pattern,
which is a character string that
includes one or more wildcards.

% matches any number (zero or more)
of characters in the corresponding
position in first character expression.

_ matches one character in the
corresponding position in the character
expression.

Any other character matches only that
character in the corresponding position
in the character expression.

city LIKE 'Sant_'

To treat % or _ as constant characters,
escape the character with an optional
escape character, which you specify
with the ESCAPE clause.

CharacterExpression
 [NOT] LIKE

 CharacterExpression
 WithWildCard
 [ESCAPE

'escapeCharacter']

Java DB Reference Manual

76

Operator Explanation and Example Syntax

SELECT a FROM tabA WHERE a
LIKE '%=_' ESCAPE '='

BETWEEN Tests whether the first operand
is between the second and third
operands. The second operand
must be less than the third operand.
Applicable only to types to which <=
and >= can be applied.

WHERE booking_date BETWEEN
 DATE('1998-02-26') AND
 DATE('1998-03-01')

Expression [NOT]
BETWEEN Expression
 AND Expression

IN Operates on table subquery or list
of values. Returns TRUE if the left
expression's value is in the result of
the table subquery or in the list of
values. Table subquery can return
multiple rows but must return a single
column.

WHERE booking_date NOT IN
 (SELECT booking_date FROM
HotelBookings WHERE
 rooms_available = 0)

{
 Expression [NOT]
 IN
 TableSubquery
 |
 Expression [NOT]
 IN (Expression
 [, Expression]*
)
}

EXISTS Operates on a table subquery. Returns
TRUE if the table subquery returns any
rows, and FALSE if it returns no rows.
Table subquery can return multiple
columns (only if you use * to denote
multiple columns) and rows.

WHERE EXISTS
 (SELECT *
 FROM Flights
 WHERE dest_airport = 'SFO'
 AND orig_airport = 'GRU')

[NOT] EXISTS
 TableSubquery

Quantified
comparison

A quantified comparison is a
comparison operator (<, =, >, <=, >=,
<>) with ALL or ANY or SOME applied.

Operates on table subqueries, which
can return multiple rows but must
return a single column.

If ALL is used, the comparison must be
true for all values returned by the table
subquery. If ANY or SOME is used, the
comparison must be true for at least
one value of the table subquery. ANY
and SOME are equivalent.

WHERE normal_rate < ALL
(SELECT budget/550 FROM Groups)

Expression
 ComparisonOperator
 {
 ALL |
 ANY |
 SOME
 }
 TableSubquery

Java DB Reference Manual

77

Dynamic parameters

You can prepare statements that are allowed to have parameters for which the value is
not specified when the statement is prepared using PreparedStatement methods in the
JDBC API. These parameters are called dynamic parameters and are represented by a
?.

The JDBC API documents refer to dynamic parameters as IN, INOUT, or OUT
parameters. In SQL, they are always IN parameters.

New: Derby supports the interface ParameterMetaData, new in JDBC 3.0. This interface
describes the number, type, and properties of prepared statement parameters. See the
Java DB Developer's Guide for more information.

You must specify values for them before executing the statement. The values specified
must match the types expected.

Dynamic parameters example

PreparedStatement ps2 = conn.prepareStatement(
 "UPDATE HotelAvailability SET rooms_available = " +
 "(rooms_available - ?) WHERE hotel_id = ? " +
 "AND booking_date BETWEEN ? AND ?");
-- this sample code sets the values of dynamic parameters
-- to be the values of program variables
ps2.setInt(1, numberRooms);
ps2.setInt(2, theHotel.hotelId);
ps2.setDate(3, arrival);
ps2.setDate(4, departure);
updateCount = ps2.executeUpdate();

Where dynamic parameters are allowed

You can use dynamic parameters anywhere in an expression where their data type can
be easily deduced.

1. Use as the first operand of BETWEEN is allowed if one of the second and third
operands is not also a dynamic parameter. The type of the first operand is assumed
to be the type of the non-dynamic parameter, or the union result of their types if
both are not dynamic parameters.

WHERE ? BETWEEN DATE('1996-01-01') AND ?
-- types assumed to be DATES

2. Use as the second or third operand of BETWEEN is allowed. Type is assumed to
be the type of the left operand.

WHERE DATE('1996-01-01') BETWEEN ? AND ?
-- types assumed to be DATES

3. Use as the left operand of an IN list is allowed if at least one item in the list is not
itself a dynamic parameter. Type for the left operand is assumed to be the union
result of the types of the non-dynamic parameters in the list.

WHERE ? NOT IN (?, ?, 'Santiago')
-- types assumed to be CHAR

4. Use in the values list in an IN predicate is allowed if the first operand is not a
dynamic parameter or its type was determined in the previous rule. Type of the
dynamic parameters appearing in the values list is assumed to be the type of the
left operand.

WHERE FloatColumn IN (?, ?,
 ?)
-- types assumed to be FLOAT

5. For the binary operators +, -, *, /, AND, OR, <, >, =, <>, <=, and >=, use of a
dynamic parameter as one operand but not both is permitted. Its type is taken from
the other side.

Java DB Reference Manual

78

WHERE ? < CURRENT_TIMESTAMP
-- type assumed to be a TIMESTAMP

6. Use in a CAST is always permitted. This gives the dynamic parameter a type.

CALL valueOf(CAST (? AS VARCHAR(10)))
7. Use on either or both sides of LIKE operator is permitted. When used on the left, the

type of the dynamic parameter is set to the type of the right operand, but with the
maximum allowed length for the type. When used on the right, the type is assumed
to be of the same length and type as the left operand. (LIKE is permitted on CHAR
and VARCHAR types; see Concatenation operator for more information.)

WHERE ? LIKE 'Santi%'
-- type assumed to be CHAR with a length of
-- java.lang.Integer.MAX_VALUE

8. A ? parameter is allowed by itself on only one side of the || operator. That is, "? || ?"
is not allowed. The type of a ? parameter on one side of a || operator is determined
by the type of the expression on the other side of the || operator. If the expression
on the other side is a CHAR or VARCHAR, the type of the parameter is VARCHAR
with the maximum allowed length for the type. If the expression on the other side
is a CHAR FOR BIT DATA or VARCHAR FOR BIT DATA type, the type of the
parameter is VARCHAR FOR BIT DATA with the maximum allowed length for the
type.

SELECT BITcolumn || ?
FROM UserTable
-- Type assumed to be CHAR FOR BIT DATA of length specified for
 BITcolumn

9. In a conditional expression, which uses a ?, use of a dynamic parameter (which is
also represented as a ?) is allowed. The type of a dynamic parameter as the first
operand is assumed to be boolean. Only one of the second and third operands can
be a dynamic parameter, and its type will be assumed to be the same as that of the
other (that is, the third and second operand, respectively).

SELECT c1 IS NULL ? ? : c1
-- allows you to specify a "default" value at execution time
-- dynamic parameter assumed to be the type of c1
-- you cannot have dynamic parameters on both sides
-- of the :

10. A dynamic parameter is allowed as an item in the values list or select list of an
INSERT statement. The type of the dynamic parameter is assumed to be the type of
the target column.

INSERT INTO t VALUES (?)
-- dynamic parameter assumed to be the type
-- of the only column in table t
INSERT INTO t SELECT ?
FROM t2
-- not allowed

11. A ? parameter in a comparison with a subquery takes its type from the expression
being selected by the subquery. For example:

SELECT *
FROM tab1
WHERE ? = (SELECT x FROM tab2)

SELECT *
FROM tab1
WHERE ? = ANY (SELECT x FROM tab2)
-- In both cases, the type of the dynamic parameter is
-- assumed to be the same as the type of tab2.x.

Java DB Reference Manual

79

12. A dynamic parameter is allowed as the value in an UPDATE statement. The type of
the dynamic parameter is assumed to be the type of the column in the target table.

UPDATE t2 SET c2 =? -- type is assumed to be type of c2
13. Dynamic parameters are allowed as the operand of the unary operators - or +. For

example:

CREATE TABLE t1 (c11 INT, c12 SMALLINT, c13 DOUBLE, c14 CHAR(3))
SELECT * FROM t1 WHERE c11 BETWEEN -? AND +?
-– The type of both of the unary operators is INT
-- based on the context in which they are used (that is,
-- because c11 is INT, the unary parameters also get the
-- type INT.

14. LENGTH allow a dynamic parameter. The type is assumed to be a maximum length
VARCHAR type.

SELECT LENGTH(?)
15. Qualified comparisons.

? = SOME (SELECT 1 FROM t)
-- is valid. Dynamic parameter assumed to be INTEGER type
1 = SOME (SELECT ? FROM t)
-- is valid. Dynamic parameter assumed to be INTEGER type.

16. A dynamic parameter is allowed as the left operand of an IS expression and is
assumed to be a boolean.

Once the type of a dynamic parameter is determined based on the expression it is in,
that expression is allowed anywhere it would normally be allowed if it did not include a
dynamic parameter.

JOIN operations
The JOIN operations, which are among the possible TableExpressions in a FROM
clause, perform joins between two tables. (You can also perform a join between two
tables using an explicit equality test in a WHERE clause, such as "WHERE t1.col1 =
t2.col2".)

Syntax

JOIN Operation

The JOIN operations are:
• INNER JOIN operation

Specifies a join between two tables with an explicit join clause. See INNER JOIN
operation.

• LEFT OUTER JOIN operation

Specifies a join between two tables with an explicit join clause, preserving
unmatched rows from the first table. See LEFT OUTER JOIN operation.

• RIGHT OUTER JOIN operation

Specifies a join between two tables with an explicit join clause, preserving
unmatched rows from the second table. See RIGHT OUTER JOIN operation.

In all cases, you can specify additional restrictions on one or both of the tables being
joined in outer join clauses or in the WHERE clause.

JOIN expressions and query optimization

For information on which types of joins are optimized, see Tuning Java DB.

Java DB Reference Manual

80

INNER JOIN operation

An INNER JOIN is a JOIN operation that allows you to specify an explicit join clause.

Syntax

TableExpression [INNER] JOIN TableExpression { ON booleanExpression }

You can specify the join clause by specifying ON with a boolean expression.

The scope of expressions in the ON clause includes the current tables and any tables in
outer query blocks to the current SELECT. In the following example, the ON clause refers
to the current tables:

SELECT *
FROM SAMP.EMPLOYEE INNER JOIN SAMP.STAFF
ON EMPLOYEE.SALARY < STAFF.SALARY

The ON clause can reference tables not being joined and does not have to reference
either of the tables being joined (though typically it does).

-- Join the EMP_ACT and EMPLOYEE tables
-- select all the columns from the EMP_ACT table and
-- add the employee's surname (LASTNAME) from the EMPLOYEE table
-- to each row of the result
SELECT SAMP.EMP_ACT.*, LASTNAME
 FROM SAMP.EMP_ACT JOIN SAMP.EMPLOYEE
 ON EMP_ACT.EMPNO = EMPLOYEE.EMPNO
-- Join the EMPLOYEE and DEPARTMENT tables,
-- select the employee number (EMPNO),
-- employee surname (LASTNAME),
-- department number (WORKDEPT in the EMPLOYEE table and DEPTNO in the
-- DEPARTMENT table)
-- and department name (DEPTNAME)
-- of all employees who were born (BIRTHDATE) earlier than 1930.
SELECT EMPNO, LASTNAME, WORKDEPT, DEPTNAME
 FROM SAMP.EMPLOYEE JOIN SAMP.DEPARTMENT
 ON WORKDEPT = DEPTNO
 AND YEAR(BIRTHDATE) < 1930

-- Another example of "generating" new data values,
-- using a query which selects from a VALUES clause (which is an
-- alternate form of a fullselect).
-- This query shows how a table can be derived called "X"
-- having 2 columns "R1" and "R2" and 1 row of data
SELECT *
FROM (VALUES (3, 4), (1, 5), (2, 6))
AS VALUESTABLE1(C1, C2)
JOIN (VALUES (3, 2), (1, 2),
(0, 3)) AS VALUESTABLE2(c1, c2)
ON VALUESTABLE1.c1 = VALUESTABLE2.c1
-- This results in:
-- C1 |C2 |C1 |2
-- ---
-- 3 |4 |3 |2
-- 1 |5 |1 |2

-- List every department with the employee number and
-- last name of the manager

SELECT DEPTNO, DEPTNAME, EMPNO, LASTNAME
 FROM DEPARTMENT INNER JOIN EMPLOYEE
 ON MGRNO = EMPNO

-- List every employee number and last name
-- with the employee number and last name of their manager
SELECT E.EMPNO, E.LASTNAME, M.EMPNO, M.LASTNAME
 FROM EMPLOYEE E INNER JOIN

Java DB Reference Manual

81

 DEPARTMENT INNER JOIN EMPLOYEE M
 ON MGRNO = M.EMPNO
 ON E.WORKDEPT = DEPTNO

LEFT OUTER JOIN operation

A LEFT OUTER JOIN is one of the JOIN operations that allow you to specify a join
clause. It preserves the unmatched rows from the first (left) table, joining them with a
NULL row in the shape of the second (right) table.

Syntax

TableExpression LEFT [OUTER] JOIN TableExpression
{
 ON booleanExpression
 }

The scope of expressions in either the ON clause includes the current tables and any
tables in query blocks outer to the current SELECT. The ON clause can reference tables
not being joined and does not have to reference either of the tables being joined (though
typically it does).

Example 1

--match cities to countries in Asia

SELECT CITIES.COUNTRY, CITIES.CITY_NAME, REGION
FROM Countries
LEFT OUTER JOIN Cities
ON CITIES.COUNTRY_ISO_CODE = COUNTRIES.COUNTRY_ISO_CODE
WHERE REGION = 'Asia'

-- use the synonymous syntax, LEFT JOIN, to achieve exactly
-- the same results as in the example above

SELECT COUNTRIES.COUNTRY, CITIES.CITY_NAME,REGION
FROM COUNTRIES
LEFT JOIN CITIES
ON CITIES.COUNTRY_ISO_CODE = COUNTRIES.COUNTRY_ISO_CODE
WHERE REGION = 'Asia'

Example 2

-- Join the EMPLOYEE and DEPARTMENT tables,
-- select the employee number (EMPNO),
-- employee surname (LASTNAME),
-- department number (WORKDEPT in the EMPLOYEE table
-- and DEPTNO in the DEPARTMENT table)
-- and department name (DEPTNAME)
-- of all employees who were born (BIRTHDATE) earlier than 1930

SELECT EMPNO, LASTNAME, WORKDEPT, DEPTNAME
 FROM SAMP.EMPLOYEE LEFT OUTER JOIN SAMP.DEPARTMENT
 ON WORKDEPT = DEPTNO
 AND YEAR(BIRTHDATE) < 1930

-- List every department with the employee number and
-- last name of the manager,
-- including departments without a manager

SELECT DEPTNO, DEPTNAME, EMPNO, LASTNAME
 FROM DEPARTMENT LEFT OUTER JOIN EMPLOYEE
 ON MGRNO = EMPNO

Java DB Reference Manual

82

RIGHT OUTER JOIN operation

A RIGHT OUTER JOIN is one of the JOIN operations that allow you to specify a JOIN
clause. It preserves the unmatched rows from the second (right) table, joining them with
a NULL in the shape of the first (left) table. A LEFT OUTER JOIN B is equivalent to B
RIGHT OUTER JOIN A, with the columns in a different order.

Syntax

TableExpression RIGHT [OUTER] JOIN TableExpression
{
 ON booleanExpression
 }

The scope of expressions in the ON clause includes the current tables and any tables in
query blocks outer to the current SELECT. The ON clause can reference tables not being
joined and does not have to reference either of the tables being joined (though typically it
does).

Example 1

-- get all countries and corresponding cities, including
-- countries without any cities

SELECT COUNTRIES.COUNTRY, CITIES.CITY_NAME
FROM CITIES
RIGHT OUTER JOIN COUNTRIES
ON CITIES.COUNTRY_ISO_CODE = COUNTRIES.COUNTRY_ISO_CODE

-- get all countries in Africa and corresponding cities, including
-- countries without any cities

SELECT COUNTRIES.COUNTRY, CITIES.CITY_NAME
FROM CITIES
RIGHT OUTER JOIN COUNTRIES
ON CITIES.COUNTRY_ISO_CODE = COUNTRIES.COUNTRY_ISO_CODE
WHERE Countries.region = 'Africa'

-- use the synonymous syntax, RIGHT JOIN, to achieve exactly
-- the same results as in the example above

SELECT COUNTRIES.COUNTRY, CITIES.CITY_NAME
FROM CITIES
RIGHT JOIN COUNTRIES
ON CITIES.COUNTRY_ISO_CODE = COUNTRIES.COUNTRY_ISO_CODE
WHERE Countries.region = 'Africa'

Example 2

-- a TableExpression can be a joinOperation. Therefore
-- you can have multiple join operations in a FROM clause
-- List every employee number and last name
-- with the employee number and last name of their manager

SELECT E.EMPNO, E.LASTNAME, M.EMPNO, M.LASTNAME
 FROM EMPLOYEE E RIGHT OUTER JOIN
 DEPARTMENT RIGHT OUTER JOIN EMPLOYEE M
 ON MGRNO = M.EMPNO
 ON E.WORKDEPT = DEPTNO

SQL queries

Query

A query creates a virtual table based on existing tables or constants built into tables.

Java DB Reference Manual

83

Syntax

{
 (Query)
 |
 Query INTERSECT [ALL | DISTINCT]
 Query
 |
 Query EXCEPT [ALL | DISTINCT] Query |
 Query UNION [ALL | DISTINCT] Query |
SelectExpression | VALUES Expression
}

You can arbitrarily put parentheses around queries, or use the parentheses to control
the order of evaluation of the INTERSECT, EXCEPT, or UNION operations. These
operations are evaluated from left to right when no parentheses are present, with the
exception of INTERSECT operations, which would be evaluated before any UNION or
EXCEPT operations.

Duplicates in UNION, INTERSECT, and EXCEPT ALL results

The ALL and DISTINCT keywords determine whether duplicates are eliminated from the
result of the operation. If you specify the DISTINCT keyword, then the result will have
no duplicate rows. If you specify the ALL keyword, then there may be duplicates in the
result, depending on whether there were duplicates in the input. DISTINCT is the default,
so if you don't specify ALL or DISTINCT, the duplicates will be eliminated. For example,
UNION builds an intermediate ResultSet with all of the rows from both queries and
eliminates the duplicate rows before returning the remaining rows. UNION ALL returns all
rows from both queries as the result.

Depending on which operation is specified, if the number of copies of a row in the left
table is L and the number of copies of that row in the right table is R, then the number of
duplicates of that particular row that the output table contains (assuming the ALL keyword
is specified) is:

• UNION: (L + R).
• EXCEPT: the maximum of (L – R) and 0 (zero).
• INTERSECT: the minimum of L and R.

Examples

-- a Select expression
SELECT *
FROM ORG

-- a subquery
SELECT *
FROM (SELECT CLASS_CODE FROM CL_SCHED) AS CS

-- a subquery
SELECT *
FROM (SELECT CLASS_CODE FROM CL_SCHED) AS CS (CLASS_CODE)

-- a UNION
-- returns all rows from columns DEPTNUMB and MANAGER
-- in table ORG
-- and (1,2) and (3,4)
-- DEPTNUMB and MANAGER are smallint columns
SELECT DEPTNUMB, MANAGER
FROM ORG
UNION ALL
VALUES (1,2), (3,4)

-- a values expression
VALUES (1,2,3)

Java DB Reference Manual

84

-- List the employee numbers (EMPNO) of all employees in the EMPLOYEE
 table
-- whose department number (WORKDEPT) either begins with 'E' or
-- who are assigned to projects in the EMP_ACT table
-- whose project number (PROJNO) equals 'MA2100', 'MA2110', or 'MA2112'
SELECT EMPNO
 FROM EMPLOYEE
 WHERE WORKDEPT LIKE 'E%'
 UNION
 SELECT EMPNO
 FROM EMP_ACT
 WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')
-- Make the same query as in the previous example
-- and "tag" the rows from the EMPLOYEE table with 'emp' and
-- the rows from the EMP_ACT table with 'emp_act'.
-- Unlike the result from the previous example,
-- this query may return the same EMPNO more than once,
-- identifying which table it came from by the associated "tag"
SELECT EMPNO, 'emp'
 FROM EMPLOYEE
 WHERE WORKDEPT LIKE 'E%'
 UNION
 SELECT EMPNO, 'emp_act' FROM EMP_ACT
 WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')
-- Make the same query as in the previous example,
-- only use UNION ALL so that no duplicate rows are eliminated
SELECT EMPNO
 FROM EMPLOYEE
 WHERE WORKDEPT LIKE 'E%'
 UNION ALL
 SELECT EMPNO
 FROM EMP_ACT
 WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')
-- Make the same query as in the previous example,
-- only include an additional two employees currently not in any table
 and
-- tag these rows as "new"
 SELECT EMPNO, 'emp'
 FROM EMPLOYEE
 WHERE WORKDEPT LIKE 'E%'
 UNION
 SELECT EMPNO, 'emp_act'
 FROM EMP_ACT
 WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')
 UNION
 VALUES ('NEWAAA', 'new'), ('NEWBBB', 'new')

ScalarSubquery

You can place a ScalarSubquery anywhere an Expression is permitted. A
ScalarSubquery turns a SelectExpression result into a scalar value because it returns
only a single row and column value.

The query must evaluate to a single row with a single column.

Sometimes also called an expression subquery.

Syntax

(Query)

Examples

-- avg always returns a single value, so the subquery is
-- a ScalarSubquery
SELECT NAME, COMM
 FROM STAFF
 WHERE EXISTS

Java DB Reference Manual

85

 (SELECT AVG(BONUS + 800)
 FROM EMPLOYEE
 WHERE COMM < 5000
 AND EMPLOYEE.LASTNAME = UPPER(STAFF.NAME)
)
-- Introduce a way of "generating" new data values,
-- using a query which selects from a VALUES clause (which is an
-- alternate form of a fullselect).
-- This query shows how a table can be derived called "X" having
-- 2 columns "R1" and "R2" and 1 row of data.
SELECT R1,R2
 FROM (VALUES('GROUP 1','GROUP 2')) AS X(R1,R2)

TableSubquery

A TableSubquery is a subquery that returns multiple rows.

Unlike a ScalarSubquery, a TableSubquery is allowed only:
• as a TableExpression in a FROM clause
• with EXISTS, IN, or quantified comparisons.

When used as a TableExpression in a FROM clause, it can return multiple columns.
When used with EXISTS, it returns multiple columns only if you use * to return the
multiple columns.

When used with IN or quantified comparisons, it must return a single column.

Syntax

(Query)

Example

-- a subquery used as a TableExpression in a FROM clause
SELECT VirtualFlightTable.flight_ID
FROM
 (SELECT flight_ID, orig_airport, dest_airport
 FROM Flights
 WHERE (orig_airport = 'SFO' OR dest_airport = 'SCL'))
AS VirtualFlightTable
-- a subquery (values expression) used as a TableExpression
-- in a FROM clause
SELECT mycol1
FROM
 (VALUES (1, 2), (3, 4))
AS mytable (mycol1, mycol2)
-- a subquery used with EXISTS
SELECT *
FROM Flights
WHERE EXISTS
 (SELECT * FROM Flights WHERE dest_airport = 'SFO'
 AND orig_airport = 'GRU')
-- a subquery used with IN
SELECT flight_id, segment_number
FROM Flights
WHERE flight_id IN
 (SELECT flight_ID
 FROM Flights WHERE orig_airport = 'SFO'
 OR dest_airport = 'SCL')
-- a subquery used with a quantified comparison
SELECT NAME, COMM
FROM STAFF
WHERE COMM >
(SELECT AVG(BONUS + 800)
 FROM EMPLOYEE
 WHERE COMM < 5000)

Java DB Reference Manual

86

Built-in functions
A built-in function is an expression in which an SQL keyword or special operator
executes some operation. Built-in functions use keywords or special built-in operators.
Built-ins are SQL92Identifiers and are case-insensitive. Note that escaped functions like
TIMESTAMPADD and TIMESTAMPDIFF are only accessible using the JDBC escape
function syntax, and can be found in JDBC escape syntax.

Standard built-in functions

The standard built-in functions supported in Derby are as follows:

• ABS or ABSVAL function
• ACOS function
• ASIN function
• ATAN function
• BIGINT function
• CAST function
• CEIL or CEILING function
• CHAR function
• Concatenation operator
• COS function
• NULLIF expressions
• CURRENT_DATE function
• CURRENT ISOLATION function
• CURRENT_TIME function
• CURRENT_TIMESTAMP function
• CURRENT_USER function
• DATE function
• DAY function
• DEGREES function
• DOUBLE function
• EXP function
• FLOOR function
• HOUR function
• IDENTITY_VAL_LOCAL function
• INTEGER function
• LENGTH function
• LN or LOG function
• LOG10 function
• LOCATE function
• LCASE or LOWER function
• LTRIM function
• MINUTE function
• MOD function
• MONTH function
• PI function
• RADIANS function
• RTRIM function
• SECOND function
• SESSION_USER function
• SIN function
• SMALLINT function
• SQRT function
• SUBSTR function
• TAN function

Java DB Reference Manual

87

• TIME function
• TIMESTAMP function
• TRIM function
• UCASE or UPPER function
• USER function
• VARCHAR function
• YEAR function

Aggregates (set functions)

This section describes aggregates (also described as set functions in ANSI SQL-92 and
as column functions in some database literature). They provide a means of evaluating
an expression over a set of rows. Whereas the other built-in functions operate on a
single expression, aggregates operate on a set of values and reduce them to a single
scalar value. Built-in aggregates can calculate the minimum, maximum, sum, count, and
average of an expression over a set of values as well as count rows. You can also create
your own aggregates to perform other set functions such as calculating the standard
deviation.

The built-in aggregates can operate on the data types shown in Permitted Data Types for
Built-in Aggregates.
Table 7. Permitted Data Types for Built-in Aggregates

 '
All Types

Numeric Built-in Data
Types

COUNT X X

MIN ' X

MAX ' X

AVG ' X

SUM ' X

Aggregates are permitted only in the following:
• A SelectItem in a SelectExpression.
• A HAVING clause.
• An ORDER BY clause (using an alias name) if the aggregate appears in the

result of the relevant query block. That is, an alias for an aggregate is permitted
in an ORDER BY clause if and only if the aggregate appears in a SelectItem in a
SelectExpression.

All expressions in SelectItems in the SelectExpression must be either aggregates
or grouped columns (see GROUP BY clause). (The same is true if there is a
HAVING clause without a GROUP BY clause.) This is because the ResultSet of a
SelectExpression must be either a scalar (single value) or a vector (multiple values),
but not a mixture of both. (Aggregates evaluate to a scalar value, and the reference to
a column can evaluate to a vector.) For example, the following query mixes scalar and
vector values and thus is not valid:

-- not valid
SELECT MIN(flying_time), flight_id
FROM Flights

Aggregates are not allowed on outer references (correlations). This means that if a
subquery contains an aggregate, that aggregate cannot evaluate an expression that
includes a reference to a column in the outer query block. For example, the following
query is not valid because SUM operates on a column from the outer query:

Java DB Reference Manual

88

SELECT c1
FROM t1
GROUP BY c1
HAVING c2 >
 (SELECT t2.x
 FROM t2
 WHERE t2.y = SUM(t1.c3))

A cursor declared on a ResultSet that includes an aggregate in the outer query block is
not updatable.

This section includes the following aggregates:
• AVG function
• COUNT function
• MAX function
• MIN function
• SUM function

ABS or ABSVAL function

ABS or ABSVAL returns the absolute value of a numeric expression. The return type
is the type of parameter. All built-in numeric types are supported (DECIMAL, DOUBLE
PRECISION, FLOAT, INTEGER, BIGINT, NUMERIC, REAL, and SMALLINT).

Syntax

ABS(NumericExpression)

-- returns 3
VALUES ABS(-3)

ACOS function

The ACOS function returns the arc cosine of a specified number.

The specified number is the cosine, in radians, of the angle that you want. The specified
number must be a DOUBLE PRECISION number.

• If the specified number is NULL, the result of this function is NULL.
• If the absolute value of the specified number is greater than 1, an exception is

returned that indicates that the value is out of range (SQL state 22003).

The returned value, in radians, is in the range of zero (0) to pi. The data type of the
returned value is a DOUBLE PRECISION number.

Syntax

ACOS (number)

ASIN function

The ASIN function returns the arc sine of a specified number.

The specified number is the sine, in radians, of the angle that you want. The specified
number must be a DOUBLE PRECISION number.

• If the specified number is NULL, the result of this function is NULL.
• If the specified number is zero (0), the result of this function is zero with the same

sign as the specified number.
• If the absolute value of the specified number is greater than 1, an exception is

returned that indicates that the value is out of range (SQL state 22003).

Java DB Reference Manual

89

The returned value, in radians, is in the range -pi/2 to pi/2. The data type of the returned
value is a DOUBLE PRECISION number.

Syntax

ASIN (number)

ATAN function

The ATAN function returns the arc tangent of a specified number.

The specified number is the tangent, in radians, of the angle that you want. The specified
number must be a DOUBLE PRECISION number.

• If the specified number is NULL, the result of this function is NULL.
• If the specified number is zero (0), the result of this function is zero with the same

sign as the specified number.

The returned value, in radians, is in the range -pi/2 to pi/2. The data type of the returned
value is a DOUBLE PRECISION number.

Syntax

ATAN (number)

AVG function

AVG is an aggregate function that evaluates the average of an expression over a set of
rows (see Aggregates (set functions)). AVG is allowed only on expressions that evaluate
to numeric data types.

Syntax

AVG ([DISTINCT | ALL] Expression)

The DISTINCT qualifier eliminates duplicates. The ALL qualifier retains duplicates. ALL
is the default value if neither ALL nor DISTINCT is specified. For example, if a column
contains the values 1.0, 1.0, 1.0, 1.0, and 2.0, AVG(col) returns a smaller value than
AVG(DISTINCT col).

Only one DISTINCT aggregate expression per SelectExpression is allowed. For example,
the following query is not valid:

SELECT AVG (DISTINCT flying_time), SUM (DISTINCT miles)
FROM Flights

The expression can contain multiple column references or expressions, but it cannot
contain another aggregate or subquery. It must evaluate to an SQL-92 numeric data type.
You can therefore call methods that evaluate to SQL-92 data types. If an expression
evaluates to NULL, the aggregate skips that value.

The resulting data type is the same as the expression on which it operates (it will never
overflow). The following query, for example, returns the INTEGER 1, which might not be
what you would expect:

SELECT AVG(c1)
FROM (VALUES (1), (1), (1), (1), (2)) AS myTable (c1)

CAST the expression to another data type if you want more precision:

SELECT AVG(CAST (c1 AS DOUBLE PRECISION))
FROM (VALUES (1), (1), (1), (1), (2)) AS myTable (c1)

Java DB Reference Manual

90

BIGINT function

The BIGINT function returns a 64-bit integer representation of a number or character
string in the form of an integer constant.

Syntax

BIGINT (CharacterExpression | NumericExpression)

CharacterExpression
An expression that returns a character string value of length not greater than
the maximum length of a character constant. Leading and trailing blanks are
eliminated and the resulting string must conform to the rules for forming an SQL
integer constant. The character string cannot be a long string. If the argument
is a CharacterExpression, the result is the same number that would occur if the
corresponding integer constant were assigned to a big integer column or variable.

NumericExpression
An expression that returns a value of any built-in numeric data type. If the argument is
a NumericExpression, the result is the same number that would occur if the argument
were assigned to a big integer column or variable. If the whole part of the argument is
not within the range of integers, an error occurs. The decimal part of the argument is
truncated if present.

The result of the function is a big integer. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Using the EMPLOYEE table, select the EMPNO column in big integer form for further
processing in the application:

SELECT BIGINT (EMPNO) FROM EMPLOYEE

CASE expressions

Use the CASE expressions for conditional expressions in Derby.

CASE expression syntax

You can place a CASE expression anywhere an expression is allowed. It chooses an
expression to evaluate based on a boolean test.

CASE
 WHEN booleanExpression THEN thenExpression
 [WHEN booleanExpression THEN thenExpression]...
 ELSE elseExpression
END

ThenExpression and elseExpression are both expressions that must be type-compatible.
For built-in types, this means that the types must be the same or a built-in broadening
conversion must exist between the types.

-- returns 3
VALUES CASE WHEN 1=1 THEN 3 ELSE 4 END

-- returns 7
VALUES
 CASE
 WHEN 1 = 2 THEN 3
 WHEN 4 = 5 THEN 6
 ELSE 7
 END

Java DB Reference Manual

91

CAST function

The CAST function converts a value from one data type to another and provides a data
type to a dynamic parameter (?) or a NULL value.

CAST expressions are permitted anywhere expressions are permitted.

Syntax

CAST ([Expression | NULL | ?]
 AS Datatype)

The data type to which you are casting an expression is the target type. The data type of
the expression from which you are casting is the source type.

CAST conversions among SQL-92 data types
The following table shows valid explicit conversions between source types and target
types for SQL data types. This table shows which explicit conversions between data
types are valid. The first column on the table lists the source data types. The first row lists
the target data types. A "Y" indicates that a conversion from the source to the target is
valid. For example, the first cell in the second row lists the source data type SMALLINT.
The remaining cells on the second row indicate the whether or not you can convert
SMALLINT to the target data types that are listed in the first row of the table.
Table 8. Explicit conversions between source types and target types for SQL data
types

Types S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I
M
A
L

R
E
A
L

D
O
U
B
L
E

F
L
O
A
T

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G

V
A
R
C
H
A
R

C
H
A
R

F
O
R

B
I
T

D
A
T
A

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

L
O
N
G

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

C
L
O
B

B
L
O
B

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

X
M
L

SMALLINT Y Y Y Y Y Y Y Y - - - - - - - - - - -

INTEGER Y Y Y Y Y Y Y Y - - - - - - - - - - -

BIGINT Y Y Y Y Y Y Y Y - - - - - - - - - - -

DECIMAL Y Y Y Y Y Y Y Y - - - - - - - - - - -

Java DB Reference Manual

92

Types S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I
M
A
L

R
E
A
L

D
O
U
B
L
E

F
L
O
A
T

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G

V
A
R
C
H
A
R

C
H
A
R

F
O
R

B
I
T

D
A
T
A

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

L
O
N
G

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

C
L
O
B

B
L
O
B

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

X
M
L

REAL Y Y Y Y Y Y Y - - - - - - - - - - - -

DOUBLE Y Y Y Y Y Y Y - - - - - - - - - - - -

FLOAT Y Y Y Y Y Y Y - - - - - - - - - - - -

CHAR Y Y Y Y - - - Y Y Y - - - Y - Y Y Y -

VARCHAR Y Y Y Y - - - Y Y Y - - - Y - Y Y Y -

LONG
VARCHAR

- - - - - - - Y Y Y - - - Y - - - - -

CHAR FOR
BIT DATA

- - - - - - - - - - Y Y Y Y Y - - - -

VARCHAR
FOR BIT
DATA

- - - - - - - - - - Y Y Y Y Y - - - -

LONG
VARCHAR
FOR BIT
DATA

- - - - - - - - - - Y Y Y Y Y - - - -

CLOB - - - - - - - Y Y Y - - - Y - - - - -

BLOB - - - - - - - - - - - - - - Y - - - -

DATE - - - - - - - Y Y - - - - - - Y - - -

TIME - - - - - - - Y Y - - - - - - - Y - -

TIMESTAMP - - - - - - - Y Y - - - - - - Y Y Y -

XML - - - - - - - - - - - - - - - - - - Y

Java DB Reference Manual

93

If a conversion is valid, CASTs are allowed. Size incompatibilities between the source
and target types might cause runtime errors.

Notes
In this discussion, the Derby SQL-92 data types are categorized as follows:

• numeric
• Exact numeric (SMALLINT, INTEGER, BIGINT, DECIMAL, NUMERIC)
• Approximate numeric (FLOAT, REAL, DOUBLE PRECISION)

• string
• Character string (CLOB, CHAR, VARCHAR, LONG VARCHAR)
• Bit string (BLOB, CHAR FOR BIT DATA, VARCHAR FOR BIT DATA, LONG

VARCHAR FOR BIT DATA)
• date/time

• DATE
• TIME
• TIMESTAMP

Conversions from numeric types

A numeric type can be converted to any other numeric type. If the target type cannot
represent the non-fractional component without truncation, an exception is raised. If the
target numeric cannot represent the fractional component (scale) of the source numeric,
then the source is silently truncated to fit into the target. For example, casting 763.1234
as INTEGER yields 763.

Conversions from and to bit strings

Bit strings can be converted to other bit strings, but not character strings. Strings that are
converted to bit strings are padded with trailing zeros to fit the size of the target bit string.
The BLOB type is more limited and requires explicit casting. In most cases the BLOB
type cannot be casted to and from other types.

Conversions of date/time values

A date/time value can always be converted to and from a TIMESTAMP. If a DATE is
converted to a TIMESTAMP, the TIME component of the resulting TIMESTAMP is always
00:00:00. If a TIME data value is converted to a TIMESTAMP, the DATE component is
set to the value of CURRENT_DATE at the time the CAST is executed. If a TIMESTAMP
is converted to a DATE, the TIME component is silently truncated. If a TIMESTAMP is
converted to a TIME, the DATE component is silently truncated.

SELECT CAST (miles AS INT)
FROM Flights
-- convert timestamps to text
INSERT INTO mytable (text_column)
VALUES (CAST (CURRENT_TIMESTAMP AS VARCHAR(100)))
-- you must cast NULL as a data type to use it
SELECT airline
FROM Airlines
UNION ALL
VALUES (CAST (NULL AS CHAR(2)))
-- cast a double as a decimal
SELECT CAST (FLYING_TIME AS DECIMAL(5,2))
FROM FLIGHTS
-- cast a SMALLINT to a BIGINT
VALUES CAST (CAST (12 as SMALLINT) as BIGINT)

Conversions of XML values

An XML value cannot be converted to any non-XML type using an explicit or implicit
CAST. Use the XMLSERIALIZE operator to convert an XML type to a character type.

Java DB Reference Manual

94

CEIL or CEILING function

The CEIL and CEILING functions round the specified number up, and return the smallest
number that is greater than or equal to the specified number.

The specified number must be a DOUBLE PRECISION number.
• If the specified number is NULL, the result of these functions is NULL.
• If the specified number is equal to a mathematical integer, the result of these

functions is the same as the specified number.
• If the specified number is zero (0), the result of these functions is zero.
• If the specified number is less than zero but greater than -1.0, then the result of

these functions is zero.

The returned value is the smallest (closest to negative infinity) double floating point value
that is greater than or equal to the specified number. The returned value is equal to a
mathematical integer. The data type of the returned value is a DOUBLE PRECISION
number.

Syntax

CEIL (number)

CEILING (number)

CHAR function

The CHAR function returns a fixed-length character string representation.

The representations are:
• A character string, if the first argument is any type of character string.
• A datetime value, if the first argument is a date, time, or timestamp.
• A decimal number, if the first argument is a decimal number.
• A double-precision floating-point number, if the first argument is a DOUBLE or

REAL.
• An integer number, if the first argument is a SMALLINT, INTEGER, or BIGINT.

The first argument must be of a built-in data type. The result of the CHAR function is a
fixed-length character string. If the first argument can be null, the result can be null. If
the first argument is null, the result is the null value. The first argument cannot be an
XML value. To convert an XML value to a CHAR of a specified length, you must use the
SQL/XML serialization operator XMLSERIALIZE.

Character to character syntax

CHAR (CharacterExpression [, integer])

CharacterExpression
An expression that returns a value that is CHAR, VARCHAR, LONG VARCHAR, or
CLOB data type.

integer
The length attribute for the resulting fixed length character string. The value must be
between 0 and 254.

If the length of the character-expression is less than the length attribute of the result,
the result is padded with blanks up to the length of the result. If the length of the
character-expression is greater than the length attribute of the result, truncation is
performed. A warning is returned unless the truncated characters were all blanks and the
character-expression was not a long string (LONG VARCHAR or CLOB).

Integer to character syntax

CHAR (IntegerExpression)

Java DB Reference Manual

95

IntegerExpression
An expression that returns a value that is an integer data type (either SMALLINT,
INTEGER or BIGINT).

The result is the character string representation of the argument in the form of an SQL
integer constant. The result consists of n characters that are the significant digits that
represent the value of the argument with a preceding minus sign if the argument is
negative. It is left justified.

• If the first argument is a small integer: The length of the result is 6. If the number
of characters in the result is less than 6, then the result is padded on the right with
blanks to length 6.

• If the first argument is a large integer: The length of the result is 11. If the number
of characters in the result is less than 11, then the result is padded on the right with
blanks to length 11.

• If the first argument is a big integer: The length of the result is 20. If the number of
characters in the result is less than 20, then the result is padded on the right with
blanks to length 20.

Datetime to character syntax

CHAR (DatetimeExpression)

DatetimeExpression
An expression that is one of the following three data types:

• date: The result is the character representation of the date. The length of the
result is 10.

• time: The result is the character representation of the time. The length of the
result is 8.

• timestamp: The result is the character string representation of the timestamp.
The length of the result is 26.

Decimal to character

CHAR (DecimalExpression)

DecimalExpression
An expression that returns a value that is a decimal data type. If a different precision
and scale is desired, the DECIMAL scalar function can be used first to make the
change.

Floating point to character syntax

CHAR (FloatingPointExpression)

FloatingPointExpression
An expression that returns a value that is a floating-point data type (DOUBLE or
REAL).

Use the CHAR function to return the values for EDLEVEL (defined as smallint) as a fixed
length character string:

SELECT CHAR(EDLEVEL) FROM EMPLOYEE

An EDLEVEL of 18 would be returned as the CHAR(6) value '18 ' (18 followed by four
blanks).

Concatenation operator

The concatenation operator, ||, concatenates its right operand to the end of its left
operand. It operates on a character or bit expression.

Java DB Reference Manual

96

Because all built-in data types are implicitly converted to strings, this function can act on
all built-in data types.

Syntax

{
 { CharacterExpression || CharacterExpression } |
 { BitExpression || BitExpression }
}

For character strings, if both the left and right operands are of type CHAR, the resulting
type is CHAR; otherwise, it is VARCHAR. The normal blank padding/trimming rules for
CHAR and VARCHAR apply to the result of this operator.

The length of the resulting string is the sum of the lengths of both operands.

For bit strings, if both the left and the right operands are of type CHAR FOR BIT DATA,
the resulting type is CHAR FOR BIT DATA; otherwise, it is VARCHAR FOR BIT DATA.

--returns 'supercalifragilisticexbealidocious(sp?)'
VALUES 'supercalifragilistic' || 'exbealidocious' || '(sp?)'
-- returns NULL
VALUES CAST (null AS VARCHAR(7))|| 'AString'
-- returns '130asdf'
VALUES '130' || 'asdf'

COS function

The COS function returns the cosine of a specified number.

The specified number is the angle, in radians, that you want the cosine for. The specified
number must be a DOUBLE PRECISION number.

• If the specified number is NULL, the result of this function is NULL.

Syntax

COS (number)

COUNT function

COUNT is an aggregate function that counts the number of rows accessed in an
expression (see Aggregates (set functions)). COUNT is allowed on all types of
expressions.

Syntax

COUNT ([DISTINCT | ALL] Expression)

The DISTINCT qualifier eliminates duplicates. The ALL qualifier retains duplicates. ALL
is assumed if neither ALL nor DISTINCT is specified. For example, if a column contains
the values 1, 1, 1, 1, and 2, COUNT(col) returns a greater value than COUNT(DISTINCT
col).

Only one DISTINCT aggregate expression per SelectExpression is allowed. For example,
the following query is not allowed:

-- query not allowed
SELECT COUNT (DISTINCT flying_time), SUM (DISTINCT miles)
FROM Flights

An Expression can contain multiple column references or expressions, but it cannot
contain another aggregate or subquery. If an Expression evaluates to NULL, the
aggregate is not processed for that value.

Java DB Reference Manual

97

The resulting data type of COUNT is INTEGER.

-- Count the number of countries in each region,
-- show only regions that have at least 2
SELECT COUNT (country), region
FROM Countries
GROUP BY region
HAVING COUNT (country) > 1

COUNT(*) function

COUNT(*) is an aggregate function that counts the number of rows accessed. No NULLs
or duplicates are eliminated. COUNT(*) does not operate on an expression.

Syntax

COUNT(*)

The resulting data type is INTEGER.

-- Count the number of rows in the Flights table
SELECT COUNT(*)
FROM Flights

CURRENT DATE function

CURRENT DATE is a synonym for CURRENT_DATE.

CURRENT_DATE function

CURRENT_DATE returns the current date; the value returned does not change if it is
executed more than once in a single statement. This means the value is fixed even if
there is a long delay between fetching rows in a cursor.

Syntax

CURRENT_DATE

or, alternately

CURRENT DATE

-- find available future flights:
SELECT * FROM Flightavailability where flight_date > CURRENT_DATE;

CURRENT ISOLATION function

CURRENT ISOLATION returns the current isolation level as a char(2) value of either
""(blank), "UR", "CS", "RS", or "RR".

Syntax

CURRENT ISOLATION

VALUES CURRENT ISOLATION

CURRENT SCHEMA function

CURRENT SCHEMA returns the schema name used to qualify unqualified database
object references.

Java DB Reference Manual

98

Note: CURRENT SCHEMA and CURRENT SQLID are synonyms.

These functions return a string of up to 128 characters.

Syntax

CURRENT SCHEMA

-- or, alternately:

CURRENT SQLID

-- Set the name column default to the current schema:
CREATE TABLE mytable (id int, name VARCHAR(128) DEFAULT CURRENT SQLID)
-- Inserts default value of current schema value into the table:
INSERT INTO mytable(id) VALUES (1)
-- Returns the rows with the same name as the current schema:
SELECT name FROM mytable WHERE name = CURRENT SCHEMA

CURRENT TIME function

CURRENT TIME is a synonym for CURRENT_TIME.

CURRENT_TIME function

CURRENT_TIME returns the current time; the value returned does not change if it is
executed more than once in a single statement. This means the value is fixed even if
there is a long delay between fetching rows in a cursor.

Syntax

CURRENT_TIME

or, alternately

CURRENT TIME

VALUES CURRENT_TIME
-- or, alternately:

VALUES CURRENT TIME

CURRENT TIMESTAMP function

CURRENT TIMESTAMP is a synonym for CURRENT_TIMESTAMP.

CURRENT_TIMESTAMP function

CURRENT_TIMESTAMP returns the current timestamp; the value returned does not
change if it is executed more than once in a single statement. This means the value is
fixed even if there is a long delay between fetching rows in a cursor.

Syntax

CURRENT_TIMESTAMP

or, alternately

CURRENT TIMESTAMP

VALUES CURRENT_TIMESTAMP
-- or, alternately:

Java DB Reference Manual

99

VALUES CURRENT TIMESTAMP

CURRENT_USER function

CURRENT_USER returns the authorization identifier of the current user (the name of the
user passed in when the user connected to the database). If there is no current user, it
returns APP.

USER and SESSION_USER are synonyms.

These functions return a string of up to 128 characters.

Syntax

CURRENT_USER

VALUES CURRENT_USER

DATE function

The DATE function returns a date from a value.

The argument must be a date, timestamp, a positive number less than or equal to
2,932,897, a valid string representation of a date or timestamp, or a string of length 7 that
is not a CLOB, LONG VARCHAR, or XML value. If the argument is a string of length 7, it
must represent a valid date in the form yyyynnn, where yyyy are digits denoting a year,
and nnn are digits between 001 and 366, denoting a day of that year. The result of the
function is a date. If the argument can be null, the result can be null; if the argument is
null, the result is the null value.

The other rules depend on the data type of the argument specified:
• If the argument is a date, timestamp, or valid string representation of a date or

timestamp: The result is the date part of the value.
• If the argument is a number: The result is the date that is n-1 days after January 1,

0001, where n is the integral part of the number.
• If the argument is a string with a length of 7: The result is the date represented by

the string.

Syntax

DATE (expression)

This example results in an internal representation of '1988-12-25'.

VALUES DATE('1988-12-25')

DAY function

The DAY function returns the day part of a value.

The argument must be a date, timestamp, or a valid character string representation of
a date or timestamp that is not a CLOB, LONG VARCHAR, or XML value. The result of
the function is an integer between 1 and 31. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Syntax

DAY (expression)

Example

Java DB Reference Manual

100

values day('2007-08-02');

The resulting value is 2.

DEGREES function

The DEGREES function converts a specified number from radians to degrees.

The specified number is an angle measured in radians, which is converted to an
approximately equivalent angle measured in degrees. The specified number must be a
DOUBLE PRECISION number.

Attention: The conversion from radians to degrees is not exact. You should not expect
that the COS(RADIANS(90.0)) to exactly equal 0.0.

The data type of the returned value is a DOUBLE PRECISION number.

Syntax

DEGREES (number)

DOUBLE function

The DOUBLE function returns a floating-point number corresponding to a:
• number if the argument is a numeric expression.
• character string representation of a number if the argument is a string expression.

Numeric to double

DOUBLE [PRECISION] (NumericExpression)

NumericExpression
The argument is an expression that returns a value of any built-in numeric data type.

The result of the function is a double-precision floating-point number. If the argument
can be null, the result can be null; if the argument is null, the result is the null value.
The result is the same number that would occur if the argument were assigned to a
double-precision floating-point column or variable.

Character string to double

DOUBLE (StringExpression)

StringExpression
The argument can be of type CHAR or VARCHAR in the form of a numeric constant.
Leading and trailing blanks in argument are ignored.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value. The result is the same number that
would occur if the string was considered a constant and assigned to a double-precision
floating-point column or variable.

EXP function

The EXP function returns e raised to the power of the specified number.

The specified number is the exponent that you want to raise e to. The specified number
must be a DOUBLE PRECISION number.

The constant e is the base of the natural logarithms.

The data type of the returned value is a DOUBLE PRECISION number.

Java DB Reference Manual

101

Syntax

EXP (number)

FLOOR function

The FLOOR function rounds the specified number down, and returns the largest number
that is less than or equal to the specified number.

The specified number must be a DOUBLE PRECISION number.

• If the specified number is NULL, the result of this function is NULL.
• If the specified number is equal to a mathematical integer, the result of this function

is the same as the specified number.
• If the specified number is zero (0), the result of this function is zero.

The returned value is the largest (closest to positive infinity) double floating point value
that is less than or equal to the specified number. The returned value is equal to a
mathematical integer. The data type of the returned value is a DOUBLE PRECISION
number.

Syntax

FLOOR (number)

HOUR function

The HOUR function returns the hour part of a value.

The argument must be a time, timestamp, or a valid character string representation of a
time or timestamp that is not a CLOB, LONG VARCHAR, or XML value. The result of the
function is an integer between 0 and 24. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Syntax

HOUR (expression)

Example

Select all the classes that start in the afternoon from a table called TABLE1.

SELECT * FROM TABLE1 WHERE HOUR(STARTING) BETWEEN 12 AND 17

IDENTITY_VAL_LOCAL function

Derby supports the IDENTITY_VAL_LOCAL function.

Syntax:

 IDENTITY_VAL_LOCAL ()

The IDENTITY_VAL_LOCAL function is a non-deterministic function that returns the most
recently assigned value of an identity column for a connection, where the assignment
occurred as a result of a single row INSERT statement using a VALUES clause.

The IDENTITY_VAL_LOCAL function has no input parameters. The result is a DECIMAL
(31,0), regardless of the actual data type of the corresponding identity column.

The value returned by the IDENTITY_VAL_LOCAL function, for a connection, is the
value assigned to the identity column of the table identified in the most recent single
row INSERT statement. The INSERT statement must contain a VALUES clause on a

Java DB Reference Manual

102

table containing an identity column. The assigned value is an identity value generated
by Derby. The function returns a null value when a single row INSERT statement with a
VALUES clause has not been issued for a table containing an identity column.

The result of the function is not affected by the following:
• A single row INSERT statement with a VALUES clause for a table without an

identity column
• A multiple row INSERT statement with a VALUES clause
• An INSERT statement with a fullselect

If a table with an identity column has an INSERT trigger defined that inserts into another
table with another identity column, then the IDENTITY_VAL_LOCAL() function will return
the generated value for the statement table, and not for the table modified by the trigger.

Examples:

ij> create table t1(c1 int generated always as identity, c2 int);
0 rows inserted/updated/deleted
ij> insert into t1(c2) values (8);
1 row inserted/updated/deleted
ij> values IDENTITY_VAL_LOCAL();
1

1
1 row selected
ij> select IDENTITY_VAL_LOCAL()+1, IDENTITY_VAL_LOCAL()-1 from t1;
1 |2

2 |0
1 row selected
ij> insert into t1(c2) values (IDENTITY_VAL_LOCAL());
1 row inserted/updated/deleted
ij> select * from t1;
C1 |C2

1 |8
2 |1
2 rows selected
ij> values IDENTITY_VAL_LOCAL();
1

2
1 row selected
ij> insert into t1(c2) values (8), (9);
2 rows inserted/updated/deleted
ij> -- multi-values insert, return value of the function should not
 change
values IDENTITY_VAL_LOCAL();
1

2
1 row selected
ij> select * from t1;
C1 |C2

1 |8
2 |1
3 |8
4 |9
4 rows selected
ij> insert into t1(c2) select c1 from t1;
4 rows inserted/updated/deleted
-- insert with sub-select, return value should not change
ij> values IDENTITY_VAL_LOCAL();
1

2
1 row selected

Java DB Reference Manual

103

ij> select * from t1;
C1 |C2

1 |8
2 |1
3 |8
4 |9
5 |1
6 |2
7 |3
8 |4
8 rows selected

INTEGER function

The INTEGER function returns an integer representation of a number, character string,
date, or time in the form of an integer constant.

Syntax

INT[EGER] (NumericExpression | CharacterExpression)

NumericExpression
An expression that returns a value of any built-in numeric data type. If the argument is
a numeric-expression, the result is the same number that would occur if the argument
were assigned to a large integer column or variable. If the whole part of the argument
is not within the range of integers, an error occurs. The decimal part of the argument
is truncated if present.

CharacterExpression
An expression that returns a character string value of length not greater than
the maximum length of a character constant. Leading and trailing blanks are
eliminated and the resulting string must conform to the rules for forming an SQL
integer constant. The character string cannot be a long string. If the argument
is a character-expression, the result is the same number that would occur if the
corresponding integer constant were assigned to a large integer column or variable.

The result of the function is a large integer. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Using the EMPLOYEE table, select a list containing salary (SALARY) divided by
education level (EDLEVEL). Truncate any decimal in the calculation. The list should
also contain the values used in the calculation and employee number (EMPNO). The list
should be in descending order of the calculated value:

SELECT INTEGER (SALARY / EDLEVEL), SALARY, EDLEVEL, EMPNO
FROM EMPLOYEE
ORDER BY 1 DESC

LCASE or LOWER function

LCASE or LOWER takes a character expression as a parameter and returns a string in
which all alpha characters have been converted to lowercase.

Syntax

LCASE or LOWER (CharacterExpression)

A CharacterExpression is a CHAR, VARCHAR, or LONG VARCHAR data type or any
built-in type that is implicitly converted to a string (except a bit expression).

If the parameter type is CHAR or LONG VARCHAR, the return type is CHAR or LONG
VARCHAR. Otherwise, the return type is VARCHAR.

Java DB Reference Manual

104

The length and maximum length of the returned value are the same as the length and
maximum length of the parameter.

If the CharacterExpression evaluates to null, this function returns null.

-- returns 'asd1#w'
VALUES LOWER('aSD1#w')

SELECT LOWER(flight_id) FROM Flights

LENGTH function

LENGTH is applied to either a character string expression or a bit string expression and
returns the number of characters in the result.

Because all built-in data types are implicitly converted to strings, this function can act on
all built-in data types.

Syntax

LENGTH ({ CharacterExpression | BitExpression })

-- returns 20
VALUES LENGTH('supercalifragilistic')
-- returns 1
VALUES LENGTH(X'FF')
-- returns 4
VALUES LENGTH(1234567890)

LN or LOG function

The LN and LOG functions return the natural logarithm (base e) of the specified number.

The specified number must be a DOUBLE PRECISION number that is greater than zero
(0).

• If the specified number is NULL, the result of these functions is NULL.
• If the specified number is zero or a negative number, an exception is returned that

indicates that the value is out of range (SQL state 22003).

The data type of the returned value is a DOUBLE PRECISION number.

Syntax

LN (number)

LOG (number)

LOG10 function

The LOG10 function returns the base-10 logarithm of the specified number.

The specified number must be a DOUBLE PRECISION number that is greater than zero
(0).

• If the specified number is NULL, the result of this function is NULL.
• If the specified number is zero or a negative number, an exception is returned that

indicates that the value is out of range (SQL state 22003).

The data type of the returned value is a DOUBLE PRECISION number.

Syntax

LOG10 (number)

Java DB Reference Manual

105

LOCATE function

The LOCATE function is used to search for a string within another string. If the desired
string is found, LOCATE returns the index at which it is found. If the desired string is not
found, LOCATE returns 0.

Syntax

LOCATE(CharacterExpression, CharacterExpression [, StartPosition])

There are two required arguments to the LOCATE function, and a third optional
argument.

• The first CharacterExpression specifies the string to search for.
• The second CharacterExpression specifies the string in which to search.
• The third argument is the startPosition, and specifies the position in the second

argument at which the search is to start. If the third argument is not provided, the
LOCATE function starts its search at the beginning of the second argument.

The return type for LOCATE is an integer. The LOCATE function returns an integer
indicating the index position within the second argument at which the first argument was
first located. Index positions start with 1. If the first argument is not found in the second
argument, LOCATE returns 0. If the first argument is an empty string (''), LOCATE returns
the value of the third argument (or 1 if it was not provided), even if the second argument
is also an empty string. If a NULL value is passed for either of the CharacterExpression
arguments, NULL is returned.

-- returns 2, since 'love' is found at index position 2:
 VALUES LOCATE('love', 'clover')

-- returns 0, since 'stove' is not found in 'clover':
 VALUES LOCATE('stove', 'clover')

-- returns 5 (note the start position is 4):
 VALUES LOCATE('iss', 'Mississippi', 4)

-- returns 1, because the empty string is a special case:
 VALUES LOCATE('', 'ABC')

-- returns 0, because 'AAA' is not found in '':
 VALUES LOCATE('AAA', '')

-- returns 3
 VALUES LOCATE('', '', 3)

LTRIM function

LTRIM removes blanks from the beginning of a character string expression.

Syntax

LTRIM(CharacterExpression)

A CharacterExpression is a CHAR, VARCHAR, or LONG VARCHAR data type, any
built-in type that is implicitly converted to a string.

LTRIM returns NULL if CharacterExpression evaluates to null.

-- returns 'asdf '
VALUES LTRIM(' asdf ')

Java DB Reference Manual

106

MAX function

MAX is an aggregate function that evaluates the maximum of an expression over a set of
rows (see Aggregates (set functions)). MAX is allowed only on expressions that evaluate
to built-in data types (including CHAR, VARCHAR, DATE, TIME, CHAR FOR BIT DATA,
etc.).

Syntax

MAX ([DISTINCT | ALL] Expression)

The DISTINCT and ALL qualifiers eliminate or retain duplicates, but these qualifiers
have no effect in a MAX expression. Only one DISTINCT aggregate expression per
SelectExpression is allowed. For example, the following query is not allowed:

SELECT COUNT (DISTINCT flying_time), MAX (DISTINCT miles)
FROM Flights

The Expression can contain multiple column references or expressions, but it cannot
contain another aggregate or subquery. It must evaluate to a built-in data type. You can
therefore call methods that evaluate to built-in data types. (For example, a method that
returns a java.lang.Integer or int evaluates to an INTEGER.) If an expression evaluates to
NULL, the aggregate skips that value.

The type's comparison rules determine the maximum value. For CHAR and VARCHAR,
the number of blank spaces at the end of the value can affect how MAX is evaluated. For
example, if the values 'z' and 'z ' are both stored in a column, you cannot control which
one will be returned as the maximum, because blank spaces are ignored for character
comparisons.

The resulting data type is the same as the expression on which it operates (it will never
overflow).

-- find the latest date in the FlightAvailability table
SELECT MAX (flight_date) FROM FlightAvailability
-- find the longest flight originating from each airport,
-- but only when the longest flight is over 10 hours
SELECT MAX(flying_time), orig_airport
FROM Flights
GROUP BY orig_airport
HAVING MAX(flying_time) > 10

MIN function

MIN is an aggregate function that evaluates the minimum of an expression over a set of
rows (see Aggregates (set functions)). MIN is allowed only on expressions that evaluate
to built-in data types (including CHAR, VARCHAR, DATE, TIME, etc.).

Syntax

MIN ([DISTINCT | ALL] Expression)

The DISTINCT and ALL qualifiers eliminate or retain duplicates, but these qualifiers
have no effect in a MIN expression. Only one DISTINCT aggregate expression per
SelectExpression is allowed. For example, the following query is not allowed:

SELECT COUNT (DISTINCT flying_time), MIN (DISTINCT miles)
FROM Flights

The Expression can contain multiple column references or expressions, but it cannot
contain another aggregate or subquery. It must evaluate to a built-in data type. You can
therefore call methods that evaluate to built-in data types. (For example, a method that

Java DB Reference Manual

107

returns a java.lang.Integer or int evaluates to an INTEGER.) If an expression evaluates to
NULL, the aggregate skips that value.

The type's comparison rules determine the minimum value. For CHAR and VARCHAR,
the number of blank spaces at the end of the value can affect how MIN is evaluated. For
example, if the values 'z' and 'z ' are both stored in a column, you cannot control which
one will be returned as the minimum, because blank spaces are ignored for character
comparisons.

The resulting data type is the same as the expression on which it operates (it will never
overflow).

-- NOT valid:
SELECT DISTINCT flying_time, MIN(DISTINCT miles) from Flights
-- valid:
SELECT COUNT(DISTINCT flying_time), MIN(DISTINCT miles) from Flights
-- find the earliest date:
SELECT MIN (flight_date) FROM FlightAvailability;

MINUTE function

The MINUTE function returns the minute part of a value.

The argument must be a time, timestamp, or a valid character string representation of a
time or timestamp that is not a CLOB, LONG VARCHAR, or XML value. The result of the
function is an integer between 0 and 59. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Syntax

MINUTE (expression)

Example

Select all rows from the "flights" table where the "departure_time" is between 6:00 and
6:30 AM:

SELECT * FROM flights WHERE HOUR(departure_time) = 6 and
 MINUTE(departure_time) < 31;

MOD function

MOD returns the remainder (modulus) of argument 1 divided by argument 2. The result is
negative only if argument 1 is negative.

Syntax

mod(integer_type, integer_type)

The result of the function is:
• SMALLINT if both arguments are SMALLINT.
• INTEGER if one argument is INTEGER and the other is INTEGER or SMALLINT.
• BIGINT if one integer is BIGINT and the other argument is BIGINT, INTEGER, or

SMALLINT.

The result can be null; if any argument is null, the result is the null value.

MONTH function

The MONTH function returns the month part of a value.

Java DB Reference Manual

108

The argument must be a date, timestamp, or a valid character string representation of
a date or timestamp that is not a CLOB, LONG VARCHAR, or XML value. The result of
the function is an integer between 1 and 12. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Syntax

MONTH (expression)

Example

Select all rows from the EMPLOYEE table for people who were born (BIRTHDATE) in
DECEMBER.

SELECT * FROM EMPLOYEE WHERE MONTH(BIRTHDATE) = 12

NULLIF expressions

Use the NULLIF expressions for conditional expressions in Derby.

NULLIF expression syntax

NULLIF (L, R)

The NULLIF expression is very similar to the CASE expression. For example:

NULLIF(V1,V2)

is equivalent to the following CASE expression:

CASE WHEN V1=V2 THEN NULL ELSE V1 END

PI function

The PI function returns a value that is closer than any other value to pi.

The constant pi is the ratio of the circumference of a circle to the diameter of a circle.

The data type of the returned value is a DOUBLE PRECISION number.

Syntax

PI ()

RADIANS function

The RADIANS function converts a specified number from degrees to radians.

The specified number is an angle measured in degrees, which is converted to an
approximately equivalent angle measured in radians. The specified number must be a
DOUBLE PRECISION number.

Attention: The conversion from degrees to radians is not exact.

The data type of the returned value is a DOUBLE PRECISION number.

Syntax

RADIANS (number)

RTRIM function

RTRIM removes blanks from the end of a character string expression.

Java DB Reference Manual

109

Syntax

RTRIM(CharacterExpression)

A CharacterExpression is a CHAR, VARCHAR, or LONG VARCHAR data type, any
built-in type that is implicitly converted to a string.

RTRIM returns NULL if CharacterExpression evaluates to null.

-- returns ' asdf'
VALUES RTRIM(' asdf ')
-- returns 'asdf'
VALUES RTRIM('asdf ')

SECOND function

The SECOND function returns the seconds part of a value.

The argument must be a time, timestamp, or a valid character string representation of a
time or timestamp that is not a CLOB, LONG VARCHAR, or XML value. The result of the
function is an integer between 0 and 59. If the argument can be null, the result can be
null. If the argument is null, the result is 0.

Syntax

SECOND (expression)

Example
The RECEIVED column contains a timestamp that has an internal value equivalent to
2005-12-25-17.12.30.000000. To return only the seconds part of the timestamp, use the
following syntax:

SECOND(RECEIVED)

The value 30 is returned.

SESSION_USER function

SESSION_USER returns the authorization identifier or name of the current user. If there
is no current user, it returns APP.

USER, CURRENT_USER, and SESSION_USER are synonyms.

Syntax

SESSION_USER

VALUES SESSION_USER

SIN function

The SIN function returns the sine of a specified number.

The specified number is the angle, in radians, that you want the sine for. The specified
number must be a DOUBLE PRECISION number.

• If the specified number is NULL, the result of this function is NULL.
• If the specified number is zero (0), the result of this function is zero.

The data type of the returned value is a DOUBLE PRECISION number.

Syntax

SIN (number)

Java DB Reference Manual

110

SMALLINT function

The SMALLINT function returns a small integer representation of a number or character
string in the form of a small integer constant.

Syntax

SMALLINT (NumericExpression | CharacterExpression)

NumericExpression
An expression that returns a value of any built-in numeric data type. If the argument is
a NumericExpression, the result is the same number that would occur if the argument
were assigned to a small integer column or variable. If the whole part of the argument
is not within the range of small integers, an error occurs. The decimal part of the
argument is truncated if present.

CharacterExpression
An expression that returns a character string value of length not greater than
the maximum length of a character constant. Leading and trailing blanks are
eliminated and the resulting string must conform to the rules for forming an SQL
integer constant. However, the value of the constant must be in the range of
small integers. The character string cannot be a long string. If the argument is
a CharacterExpression, the result is the same number that would occur if the
corresponding integer constant were assigned to a small integer column or variable.

The result of the function is a small integer. If the argument can be null, the result can be
null. If the argument is null, the result is the null value.

Example
To determine the small integer representation of the number 32767.99, use this clause:

VALUES SMALLINT (32767.99)

The result is 32767.

To determine the small integer representation of the number 1, use this clause:

VALUES SMALLINT (1)

The result is 1.

SQRT function

Returns the square root of a floating point number; only the built-in types REAL, FLOAT,
and DOUBLE PRECISION are supported. The return type for SQRT is the type of the
parameter.

Note: To execute SQRT on other data types, you must cast them to floating point types.

Syntax

SQRT(FloatingPointExpression)

-- throws an exception if any row stores a negative number:
VALUES SQRT(3421E+09)

-- returns the square root of an INTEGER after casting it as a
-- floating point data type:
SELECT SQRT(myDoubleColumn) FROM MyTable

VALUES SQRT (CAST(25 AS FLOAT));

Java DB Reference Manual

111

SUBSTR function

The SUBSTR function acts on a character string expression or a bit string expression.
The type of the result is a VARCHAR in the first case and VARCHAR FOR BIT DATA in
the second case. The length of the result is the maximum length of the source type.

Syntax

SUBSTR({ CharacterExpression },
 StartPosition [, LengthOfString])

The parameter startPosition and the optional parameter lengthOfString are both integer
expressions. The first character or bit has a startPosition of 1. If you specify 0, Derby
assumes that you mean 1.

The parameter characterExpression is a CHAR, VARCHAR, or LONG VARCHAR data
type or any built-in type that is implicitly converted to a string (except a bit expression).

For character expressions, the startPosition and lengthOfString parameters refer to
characters. For bit expressions, the startPosition and lengthOfString parameters refer to
bits.

If the startPosition is positive, it refers to position from the start of the source expression
(counting the first character as 1). The startPosition cannot be a negative number.

If the lengthOfString is not specified, SUBSTR returns the substring of the expression
from the startPosition to the end of the source expression. If lengthOfString is specified,
SUBSTR returns a VARCHAR or VARBIT of length lengthOfString starting at the
startPosition. The SUBSTR function returns an error if you specify a negative number for
the parameter lengthOfString.

Examples
To return a substring of the word hello, starting at the second character and continuing
until the end of the word, use the following clause:

VALUES SUBSTR('hello', 2)

The result is 'ello'.

To return a substring of the word hello, starting at the first character and continuing for
two characters, use the following clause:

VALUES SUBSTR('hello',1,2)

The result is 'he'.

SUM function

SUM is an aggregate function that evaluates the sum of the expression over a set of rows
(see Aggregates (set functions)). SUM is allowed only on expressions that evaluate to
numeric data types.

Syntax

SUM ([DISTINCT | ALL] Expression)

The DISTINCT and ALL qualifiers eliminate or retain duplicates. ALL is assumed if
neither ALL nor DISTINCT is specified. For example, if a column contains the values 1, 1,
1, 1, and 2, SUM(col) returns a greater value than SUM(DISTINCT col).

Only one DISTINCT aggregate expression per SelectExpression is allowed. For example,
the following query is not allowed:

Java DB Reference Manual

112

SELECT AVG (DISTINCT flying_time), SUM (DISTINCT miles)
FROM Flights

The Expression can contain multiple column references or expressions, but it cannot
contain another aggregate or subquery. It must evaluate to a built-in numeric data type. If
an expression evaluates to NULL, the aggregate skips that value.

The resulting data type is the same as the expression on which it operates (it might
overflow).

-- find all economy seats available:
SELECT SUM (economy_seats) FROM Airlines;

-- use SUM on multiple column references
-- (find the total number of all seats purchased):
SELECT SUM (economy_seats_taken + business_seats_taken +
 firstclass_seats_taken)
as seats_taken FROM FLIGHTAVAILABILITY;

TAN function

The TAN function returns the tangent of a specified number.

The specified number is the angle, in radians, that you want the tangent for. The
specified number must be a DOUBLE PRECISION number.

• If the specified number is NULL, the result of this function is NULL.
• If the specified number is zero (0), the result of this function is zero.

The data type of the returned value is a DOUBLE PRECISION number.

Syntax

TAN (number)

TIME function

The TIME function returns a time from a value.

The argument must be a time, timestamp, or a valid string representation of a time
or timestamp that is not a CLOB, LONG VARCHAR, or XML value. The result of the
function is a time. If the argument can be null, the result can be null; if the argument is
null, the result is the null value.

The other rules depend on the data type of the argument specified:
• If the argument is a time: The result is that time.
• If the argument is a timestamp: The result is the time part of the timestamp.
• If the argument is a string: The result is the time represented by the string.

Syntax

TIME (expression)

values time(current_timestamp)

If the current time is 5:03 PM, the value returned is 17:03:00.

TIMESTAMP function

The TIMESTAMP function returns a timestamp from a value or a pair of values.

The rules for the arguments depend on whether the second argument is specified:
• If only one argument is specified: It must be a timestamp, a valid string

representation of a timestamp, or a string of length 14 that is not a CLOB, LONG

Java DB Reference Manual

113

VARCHAR, or XML value. A string of length 14 must be a string of digits that
represents a valid date and time in the form yyyyxxddhhmmss, where yyyy is the
year, xx is the month, dd is the day, hh is the hour, mm is the minute, and ss is the
seconds.

• If both arguments are specified: The first argument must be a date or a valid string
representation of a date and the second argument must be a time or a valid string
representation of a time.

The other rules depend on whether the second argument is specified:
• If both arguments are specified: The result is a timestamp with the date specified by

the first argument and the time specified by the second argument. The microsecond
part of the timestamp is zero.

• If only one argument is specified and it is a timestamp: The result is that timestamp.
• If only one argument is specified and it is a string: The result is the timestamp

represented by that string. If the argument is a string of length 14, the timestamp
has a microsecond part of zero.

Syntax

TIMESTAMP (expression [, expression])

Examples
The second column in table records_table contains dates (such as 1998-12-25) and
the third column contains times of day (such as 17:12:30). You can return the timestamp
with this statement:

SELECT TIMESTAMP(col2, col3) FROM records_table

The following clause returns the value 1998-12-25-17:12:30.0:

VALUES TIMESTAMP('1998-12-25', '17.12.30');
1

1998-12-25 17:12:30.0

TRIM function

TRIM is a function that takes a character expression and returns that expression with
leading and/or trailing pad characters removed. Optional parameters indicate whether
leading, or trailing, or both leading and trailing pad characters should be removed, and
specify the pad character that is to be removed.

Syntax

TRIM([trimOperands] trimSource)

trimOperands ::= { trimType [trimCharacter] FROM | trimCharacter FROM
 }
trimType ::= { LEADING | TRAILING | BOTH }
trimCharacter ::= CharacterExpression
trimSource ::= CharacterExpression

If trimType is not specified, it will default to BOTH. If trimCharacter is not specified, it will
default to the space character (' '). Otherwise the trimCharacter expression must evaulate
to one of the following:

• a character string whose length is exactly one, or.
• NULL

If either trimCharacter or trimSource evaluates to NULL, the result of the TRIM function is
NULL. Otherwise, the result of the TRIM function is defined as follows:

Java DB Reference Manual

114

• If trimType is LEADING, the result will be the trimSource value with all leading
occurrences of trimChar removed.

• If trimType is TRAILING, the result will be the trimSource value with all trailing
occurrences of trimChar removed.

• If trimType is BOTH, the result will be the trimSource value with all leading *and*
trailing occurrences of trimChar removed.

If trimSource's data type is CHAR or VARCHAR, the return type of the TRIM function will
be VARCHAR. Otherwise the return type of the TRIM function will be CLOB.

Examples

-- returns 'derby' (no spaces)
VALUES TRIM(' derby ')

-- returns 'derby' (no spaces)
VALUES TRIM(BOTH ' ' FROM ' derby ')

-- returns 'derby ' (with a space at the end)
VALUES TRIM(LEADING ' ' FROM ' derby ')

-- returns ' derby' (with two spaces at the beginning)
VALUES TRIM(TRAILING ' ' FROM ' derby ')

-- returns NULL
VALUES TRIM(cast (null as char(1)) FROM ' derby ')

-- returns NULL
VALUES TRIM(' ' FROM cast(null as varchar(30)))

-- returns ' derb' (with a space at the beginning)
VALUES TRIM('y' FROM ' derby')

-- results in an error because trimCharacter can only be 1 character
VALUES TRIM('by' FROM ' derby')

UCASE or UPPER function

UCASE or UPPER takes a character expression as a parameter and returns a string in
which all alpha characters have been converted to uppercase.

Syntax

UCASE or UPPER (CharacterExpression)

If the parameter type is CHAR , the return type is CHAR. Otherwise, the return type is
VARCHAR.
Note: UPPER and LOWER follow the database locale. See territory=ll_CC attribute for
more information about specifying locale.

The length and maximum length of the returned value are the same as the length and
maximum length of the parameter.

Example
To return the string aSD1#w in uppercase, use the following clause:

VALUES UPPER('aSD1#w')

The value returned is ASD1#W.

USER function

Java DB Reference Manual

115

USER returns the authorization identifier or name of the current user. If there is no
current user, it returns APP.

USER, CURRENT_USER, and SESSION_USER are synonyms.

Syntax

USER

VALUES USER

VARCHAR function

The VARCHAR function returns a varying-length character string representation of a
character string.

Character to varchar syntax

VARCHAR (CharacterStringExpression)

CharacterStringExpression
An expression whose value must be of a character-string data type with a maximum
length of 32,672 bytes.

Datetime to varchar syntax

VARCHAR (DatetimeExpression)

DatetimeExpression
An expression whose value must be of a date, time, or timestamp data type.

Using the EMPLOYEE table, select the job description (JOB defined as CHAR(8)) for
Dolores Quintana as a VARCHAR equivelant:

SELECT VARCHAR(JOB)
FROM EMPLOYEE
WHERE LASTNAME = 'QUINTANA'

XMLEXISTS operator

XMLEXISTS is an SQL/XML operator that you can use to query XML values in SQL.

The XMLEXISTS operator has two arguments, an XML query expression and a Derby
XML value.

Syntax

XMLEXISTS (xquery-string-literal
 PASSING BY REF xml-value-expression [BY REF])

xquery-string-literal
Must be specified as a string literal. If this argument is specified as a parameter,
an expression that is not a literal, or a literal that is not a string (for example an
integer), Derby throws an error. The xquery-string-literal argument must
also be an XPath expression that is supported by Apache Xalan. Derby uses Apache
Xalan to evaluate all XML query expressions. Because Xalan does not support full
XQuery, neither does Derby. If Xalan is unable to compile or execute the query
argument, Derby catches the error that is thrown by Xalan and throws the error as a
SQLException. For more on XPath and XQuery expressions, see these Web sites:
http://www.w3.org/TR/xpath and http://www.w3.org/TR/xquery/.

xml-value-expression

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xquery/

Java DB Reference Manual

116

Must be an XML data value and must constitute a well-formed SQL/XML document.
The xml-value-expression argument cannot be a parameter. Derby does not
perform implicit parsing nor casting of XML values, so use of strings or any other
data type results in an error. If the argument is a sequence that is returned by the
DerbyXMLQUERY operator, the argument is accepted if it is a sequence of exactly
one node that is a document node. Otherwise Derby throws an error.

BY REF
Optional keywords that describe the only value passing mechanism supported by
Derby. Since BY REF is also the default passing mechanism, the XMLEXISTS
operator behaves the same whether the keywords are present or not. For more
information on passing mechanisms, see the SQL/XML specification.

Operator results and combining with other operators
The result of the XMLEXISTS operator is a SQL boolean value that is based
on the results from evaluating the xquery-string-literal against the
xml-value-expression. The XMLEXISTS operator returns:
UNKNOWN

When the xml-value-expression is null.
TRUE

When the evaluation of the specified query expression against the specified xml-value
returns a non-empty sequence of nodes or values.

FALSE
When evaluation of the specified query expression against the specified xml-value
returns an empty sequence.

The XMLEXISTS operator does not return the actual results from the evaluation of the
query. You must use the XMLQUERY operator to retrieve the actual results.

Since the result of the XMLEXISTS operator is an SQL boolean data type, you can use
the XMLEXISTS operator wherever a boolean function is allowed. For example, you
can use the XMLEXISTS operator as a check constraint in a table declaration or as a
predicate in a WHERE clause.

Examples
In the x_table table, to determine if the xcol XML column for each row has an element
called student with an age attribute equal to 20, use this statement:

SELECT id, XMLEXISTS('//student[@age=20]' PASSING BY REF xcol)
 FROM x_table

In the x_table table, to return the ID for every row whose xcol XML column is non-null
and contains the element /roster/student, use this statement:

SELECT id FROM x_table WHERE XMLEXISTS('/roster/student' PASSING BY REF
 xcol)

You can create the x_table table with a check constraint that limits which XML values
can be inserted into the xcol XML column. In this example, the constraint is that the
column has at least one student element with an age attribute with a value that is less
than 25. To create the table, use this statement:

CREATE TABLE x_table (id INT, xcol XML CHECK (XMLEXISTS ('//student[@age
 < 25]' PASSING BY REF xcol)))

Usage note

Derby requires that a JAXP parser, such as Apache Xerces, and that Apache Xalan are
listed in the Java classpath for the XML functions to work. If either the JAXP parser or
Xalan is missing from the classpath, attempts to use the XMLEXISTS operator will result
in an error.

Java DB Reference Manual

117

XMLPARSE operator

XMLPARSE is a SQL/XML operator that you use to parse a character string expression
into a Derby XML value.

You can use the result of this operator temporarily or you can store the result
permanently in Derby XML columns. Whether temporary or permanent, you can use
the XML value as an input to the other Derby XML operators, such as XMLEXISTS and
XMLQUERY.

Syntax

XMLPARSE (DOCUMENT string-value-expression PRESERVE WHITESPACE)

DOCUMENT

Required keyword that describes the type of XML input that Derby can parse. Derby
can only parse string expressions that constitute well-formed XML documents. This
is because Derby uses a JAXP parser to parse all string values. The JAXP parser
expects the string-value-expression to constitute a well-formed XML document. If
the string does not constitute a well-formed document, JAXP throws an error. Derby
catches the error and throws the error as a SQLException.

string-value-expression
Any expression that evaluates to a SQL character type, such as CHAR, VARCHAR,
LONG VARCHAR, or CLOB. The string-value-expression argument can also
be a parameter. You must use the CAST function when you specify the parameter
to indicate the type of value that is bound into the parameter. Derby must verify
that the parameter is the correct data type before the value is parsed as an XML
document. If a parameter is specified without the CAST function, or if the CAST is to
a non-character datatype, Derby throws an error.

PRESERVE WHITESPACE
Required keywords that describe how Derby handles whitespace between
consecutive XML nodes. When the PRESERVE WHITESPACE keywords are
used, Derby preserves whitespace as dictated by the SQL/XML rules for preserving
whitespace.

For more information on what constitutes a well-formed XML document, see the following
specification: http://www.w3.org/TR/REC-xml/#sec-well-formed .

Restriction: The SQL/XML standard dictates that the argument to the XMLPARSE
operator can also be a binary string. However, Derby only supports character string input
for the XMLPARSE operator.

Examples
To insert a simple XML document into the xcol XML column in the x_table table, use
the following statement:

INSERT INTO x_table VALUES
 (1,
 XMLPARSE(DOCUMENT '
 <roster>
 <student age="18">AB</student>
 <student age="23">BC</student>
 <student>NOAGE</student>
 </roster>'
 PRESERVE WHITESPACE)
)

To insert a large XML document into the xcol XML column in the x_table table, from
JDBC use the following statement:

http://www.w3.org/TR/REC-xml/#sec-well-formed

Java DB Reference Manual

118

INSERT INTO x_table VALUES
 (2,
 XMLPARSE (DOCUMENT CAST (? AS CLOB) PRESERVE WHITESPACE)
)

You should bind into the statement using the setCharacterStream() method, or any other
JDBC setXXX method that works for the CAST target type.

Usage note

Derby requires that a JAXP parser, such as Apache Xerces, and that Apache Xalan are
listed in the Java classpath for the XML functions to work. If either the JAXP parser or
Xalan is missing from the classpath, attempts to use the XMLPARSE operator will result
in an error.

XMLQUERY operator

XMLQUERY is a SQL/XML operator that you can use to query XML values in SQL.

The XMLQUERY operator has two arguments, an XML query expression and a Derby
XML value.

Syntax

XMLQUERY (xquery-string-literal
 PASSING BY REF xml-value-expression
 [RETURNING SEQUENCE [BY REF]]
 EMPTY ON EMPTY
)

xquery-string-literal
Must be specified as a string literal. If this argument is specified as a parameter,
an expression that is not a literal, or a literal that is not a string (for example an
integer),Derby throws an error. The xquery-string-literal argument must
also be an XPath expression that is supported by Apache Xalan. Derby uses Apache
Xalan to evaluate all XML query expressions. Because Xalan does not support full
XQuery, neither does Derby. If Xalan is unable to compile or execute the query
argument, Derby catches the error that is thrown by Xalan and throws the error as a
SQLException. For more on XPath and XQuery expressions, see these Web sites:
http://www.w3.org/TR/xpath and http://www.w3.org/TR/xquery/.

xml-value-expression
Must be an XML data value and must constitute a well-formed SQL/XML document.
The xml-value-expression argument cannot be a parameter. Derby does not
perform implicit parsing nor casting of XML values, so use of strings or any other data
type results in an error. If the argument is a sequence that is returned by a Derby
XMLQUERY operation, the argument is accepted if it is a sequence of exactly one
node that is a document node. Otherwise Derby throws an error.

BY REF
Optional keywords that describe the only value passing mechanism supported by
Derby. Since BY REF is also the default passing mechanism, the XMLQUERY
operator behaves the same whether the keywords are present or not. For more
information on passing mechanisms, see the SQL/XML specification.

RETURNING SEQUENCE
Optional keywords that describe the only XML type returned by the Derby
XMLQUERY operator. Since SEQUENCE is also the default return type, the
XMLQUERY operator behaves the same whether the keywords are present or
not. For more information on the different XML return types, see the SQL/XML
specification.

EMPTY ON EMPTY

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xquery/

Java DB Reference Manual

119

Required keywords that describe the way in which XMLQUERY handles an empty
result sequence. The XMLQUERY operator returns an empty sequence exactly as
the sequence is. The XMLQUERY operator does not convert the empty sequence
to a null value. When an empty result sequence is serialized, the result is an empty
string. Derby does not consider an empty result sequence to be a well-formed XML
document.

The result of the XMLQUERY operator is a value of type XML. The result represents a
sequence of XML nodes or values. Atomic values, such as strings, can be part of the
result sequence. The result of an XMLQUERY operator is not guaranteed to represent
a well-formed XML document and it might not be possible to insert the result of an
XMLQUERY operator into an XML column. To store the result in an XML column, the
result must be a sequence with exactly one item in the sequence and the item must be a
well-formed document node. The result can be viewed only in serialized form by explicitly
using the XMLSERIALIZE operator.

Examples
In the x_table table, to search the XML column xcol and return the students that have
an age attribute that is greater than 20, use the following statement:

SELECT ID,
 XMLSERIALIZE(
 XMLQUERY('//student[@age>20]' PASSING BY REF xcol EMPTY ON EMPTY)
 AS VARCHAR(50))
FROM x_table

The result set for this query contains a row for every row in x_table, regardless of
whether or not the XMLQUERY operator actually returns results.

In the x_table table, to search the XML column xcol and return the ages for any
students named BC, use the following statement:

SELECT ID,
 XMLSERIALIZE(
 XMLQUERY('string(//student[text() = "BC"]/@age)' PASSING BY REF
 xcol EMPTY ON EMPTY)
 AS VARCHAR(50))
FROM x_table
WHERE
 XMLEXISTS('//student[text() = "BC"]' PASSING BY REF xcol)

The result set for this query contains a row for only the rows in x_table that have a
student whose name is BC.

Usage note

Derby requires that a JAXP parser, such as Apache Xerces, and that Apache Xalan are
listed in the Java classpath for the XML functions to work. If either the JAXP parser or
Xalan is missing from the classpath, attempts to use the XMLQUERY operator will result
in an error.

XMLSERIALIZE operator

XMLSERIALIZE is a SQL/XML operator that you can use to convert an XML type to a
character type. There is no other way to convert the type of a Derby XML value.

Attention: Serialization is performed based on the SQL/XML serialization rules. These
rules, combined with the fact that Derby supports only a subset of the XMLSERIALIZE
syntax, dictate that the results of an XMLSERIALIZE operation are not guaranteed to be
in-tact copies of the original XML text. For example, assume that [xString] is a textual
representation of a well-formed XML document. You issue the following statements:

Java DB Reference Manual

120

INSERT INTO x_table (id, xcol)
 VALUES (3, XMLPARSE(DOCUMENT '[xString]' PRESERVE WHITESPACE));

SELECT id, XMLSERIALIZE(xcol AS VARCHAR(100))
 FROM x_table WHERE id = 3;

There is no guarantee that the result of the XMLSERIALIZE operator will be identical
to the original [xString] representation. Certain transformations can occur as part
of XMLSERIALIZE processing, and those transformations are defined in the SQL/XML
specification. In some cases the result of XMLSERIALIZE might actually be the same as
the original textual representation, but that is not guaranteed.

When an XMLSERIALIZE operator is specified as part of the top-level result set for
a query, the result can be accessed from JDBC by using whatever JDBC getXXX
methods are allowed on the string-data-type argument that is included in the
XMLSERIALIZE syntax. If you attempt to select the contents of an XML value from a
top-level result set without using the XMLSERIALIZE operator, Derby throws an error.
Derby does not implicitly serialize XML values.

Syntax

XMLSERIALIZE (xml-value-expression AS string-data-type)

xml-value-expression
Can be any Derby XML value, including an XML result sequence generated by
the XMLQUERY operator. The xml-value-expression argument cannot be a
parameter.

string-data-type
Must be a SQL character string type, such as CHAR, VARCHAR, LONG VARCHAR,
or CLOB. If you specify a type that is not a valid character string type, Derby throws
an error.

Examples
In the x_table table, to display the contents of the xcol XML column, use this
statement:

SELECT ID,
 XMLSERIALIZE(
 xcol AS CLOB)
FROM x_table

To retrieve the results from JDBC, you can use the JDBC getCharacterStream() or
getString() method.

To display the results of an XMLQUERY operation, use the following statement:

SELECT ID,
 XMLSERIALIZE(
 XMLQUERY('//student[@age>20]'
 PASSING BY REF xcol EMPTY ON EMPTY)
 AS VARCHAR(50))
FROM x_table

Usage note

Derby requires that a JAXP parser, such as Apache Xerces, and that Apache Xalan are
listed in the Java classpath for the XML functions to work. If either the JAXP parser or
Xalan is missing from the classpath, attempts to use the XMLSERIALIZE operator will
result in an error

YEAR function

Java DB Reference Manual

121

The YEAR function returns the year part of a value. The argument must be a date,
timestamp, or a valid character string representation of a date or timestamp. The result of
the function is an integer between 1 and 9 999. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

Syntax

YEAR (expression)

Example

Select all the projects in the PROJECT table that are scheduled to start (PRSTDATE)
and end (PRENDATE) in the same calendar year.

SELECT * FROM PROJECT WHERE YEAR(PRSTDATE) = YEAR(PRENDATE)

Built-in system functions
This section describes the different built-in system functions available with Derby.

SYSCS_UTIL.SYSCS_CHECK_TABLE system function

The SYSCS_UTIL.SYSCS_CHECK_TABLE function checks the specified table, ensuring
that all of its indexes are consistent with the base table. If the table and indexes are
consistent, the method returns a SMALLINT with value 1. If the table and indexes are
inconsistent, the function will throw an exception.

Syntax

SMALLINT SYSCS_UTIL.SYSCS_CHECK_TABLE(IN SCHEMANAME VARCHAR(128),
IN TABLENAME VARCHAR(128))

An error will occur if either SCHEMANAME or TABLENAME are null.

Example

VALUES SYSCS_UTIL.SYSCS_CHECK_TABLE('SALES', 'ORDERS');

SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY system function

The SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY function fetches the value of a
property specified by KEY of the database on the current connection.

Syntax

VARCHAR(32762) SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY(IN KEY
 VARCHAR(128))

An error will be returned if KEY is null.

Example

VALUES SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY('key_value_string');

SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS system function

The SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS function returns a
VARCHAR(32762) value representing the query execution plan and run time statistics
for a java.sql.ResultSet. A query execution plan is a tree of execution nodes. There
are a number of possible node types. Statistics are accumulated during execution
at each node. The types of statistics include the amount of time spent in specific

Java DB Reference Manual

122

operations, the number of rows passed to the node by its children, and the number of
rows returned by the node to its parent. (The exact statistics are specific to each node
type.) SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS is most meaningful for DML
statements such as SELECT, INSERT, DELETE and UPDATE.

Syntax

VARCHAR(32762) SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS()

Example

VALUES SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS()

Built-in system procedures
Some built-in procedures are not compatible with SQL syntax used by other relational
databases. These procedures can only be used with Derby.

SYSCS_UTIL.SYSCS_BACKUP_DATABASE system procedure

The SYSCS_UTIL.SYSCS_BACKUP_DATABASE system procedure backs up the
database to a specified backup directory.

Syntax

SYSCS_UTIL.SYSCS_BACKUP_DATABASE(IN BACKUPDIR VARCHAR())

No result is returned from the procedure.

BACKUPDIR
An input argument of type VARCHAR(32672) that specifies the path to a directory,
where the backup should be stored. Relative paths are resolved based on the current
user directory, user.dir, of the JVM where the database backup is occurring.
Relative paths are not resolved based on the derby home directory. To avoid
confusion, use the absolute path.

JDBC example

The following example backs up the database to the c:/backupdir directory:

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_BACKUP_DATABASE(?)");
cs.setString(1, "c:/backupdir");
cs.execute();
cs.close();

SQL example

The following example backs up the database to the c:/backupdir directory:

CALL SYSCS_UTIL.SYSCS_BACKUP_DATABASE('c:/backupdir');

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT system procedure

The SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT system procedure backs up the
database to a specified backup directory.

If there are any transactions in progress with unlogged operations at the start of the
backup, the SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT system procedure
returns an error immediately, instead of waiting for those transactions to complete.

Syntax

Java DB Reference Manual

123

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT(IN BACKUPDIR VARCHAR())

No result is returned from the procedure.

BACKUPDIR
An input argument of type VARCHAR(32672) that specifies the path to a directory,
where the backup should be stored. Relative paths are resolved based on the current
user directory, user.dir, of the JVM where the database backup is occurring.
Relative paths are not resolved based on the derby home directory. To avoid
confusion, use the absolute path.

JDBC example

The following example backs up the database to the c:/backupdir directory:

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT(?)");
cs.setString(1, "c:/backupdir");
cs.execute();
cs.close();

SQL example

The following example backs up the database to the c:/backupdir directory:

CALL SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT('c:/backupdir');

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE
system procedure

The SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE
system procedure backs up the database to a specified backup directory and enables the
database for log archive mode.

Syntax

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE
(IN BACKUPDIR VARCHAR(32672), IN SMALLINT DELETE_ARCHIVED_LOG_FILES)

No result is returned from the procedure.

BACKUPDIR
An input argument of type VARCHAR(32672) that specifies the path to a directory,
where the backup should be stored. Relative paths are resolved based on the current
user directory, user.dir, of the JVM where the database backup is occurring.
Relative paths are not resolved based on the derby home directory. To avoid
confusion, use the absolute path

DELETE_ARCHIVED_LOG_FILES
If the input parameter value for the DELETE_ARCHIVED_LOG_FILES parameter is a
non-zero value, online archived log files that were created before this backup will be
deleted. The log files are deleted only after a successful backup.

JDBC example

The following example backs up the database to the c:/backupdir directory:

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE(?,
 ?)");
cs.setString(1, "c:/backupdir");
cs.setInt(2, 0);
cs.execute();

SQL examples

Java DB Reference Manual

124

The following example backs up the database to the c:/backupdir directory, enables
log archive mode, and does not delete any existing online archived log files:

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE('c:/
backupdir', 0)

The following example backs up the database to the c:/backupdir directory and, if this
backup is successful, deletes existing online archived log files:

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE('c:/
backupdir', 1)

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT
system procedure

The
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT
system procedure backs up the database to a specified backup directory and enables
the database for log archive mode. This procedure returns an error if there are any
transactions in progress that have unlogged operations at the start of the backup, instead
of waiting for those transactions to complete.

Syntax

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT
(IN BACKUPDIR VARCHAR(32672),
IN SMALLINT DELETE_ARCHIVED_LOG_FILES)

No result is returned from the procedure.

BACKUPDIR
An input argument of type VARCHAR(32672) that specifies the path to a directory,
where the backup should be stored. Relative paths are resolved based on the current
user directory, user.dir, of the JVM where the database backup is occurring.
Relative paths are not resolved based on the derby home directory. To avoid
confusion, use the absolute path.

DELETE_ARCHIVED_LOG_FILES
If the input parameter value for the DELETE_ARCHIVED_LOG_FILES parameter is a
non-zero value, online archived log files that were created before this backup will be
deleted. The log files are deleted only after a successful backup.

JDBC example

The following example backs up the database to the c:/backupdir directory and
enables log archive mode:

CallableStatement cs = conn.prepareCall
("CALL
 SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT(?,
 ?)");
cs.setString(1, "c:/backupdir");
cs.setInt(2, 0);
cs.execute();

SQL examples

The following example backs up the database to the c:/backupdir directory, enables
log archive mode, and does not delete any existing online archived log files:

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT('c:/
backupdir', 0)

Java DB Reference Manual

125

The following example backs up the database to the c:/backupdir directory and, if this
backup is successful, deletes existing online archived log files:

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT('c:/
backupdir', 1)

SYSCS_UTIL.SYSCS_CHECKPOINT_DATABASE system procedure

The SYSCS_UTIL.SYSCS_CHECKPOINT_DATABASE system procedure checkpoints the
database by flushing all cached data to disk.

Syntax

SYSCS_UTIL.SYSCS_CHECKPOINT_DATABASE()

No result is returned by this procedure.

JDBC example

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_CHECKPOINT_DATABASE()");
cs.execute();
cs.close();

SQL Example

CALL SYSCS_UTIL.SYSCS_CHECKPOINT_DATABASE();

SYSCS_UTIL.SYSCS_COMPRESS_TABLE system procedure

Use the SYSCS_UTIL.SYSCS_COMPRESS_TABLE system procedure to reclaim unused,
allocated space in a table and its indexes. Typically, unused allocated space exists when
a large amount of data is deleted from a table, or indexes are updated. By default, Derby
does not return unused space to the operating system. For example, once a page has
been allocated to a table or index, it is not automatically returned to the operating system
until the table or index is destroyed. SYSCS_UTIL.SYSCS_COMPRESS_TABLE allows you
to return unused space to the operating system.

The SYSCS_UTIL.SYSCS_COMPRESS_TABLE system procedure updates statistics on all
indexes as part of the index rebuilding process.

Syntax

SYSCS_UTIL.SYSCS_COMPRESS_TABLE (IN SCHEMANAME VARCHAR(128),
IN TABLENAME VARCHAR(128), IN SEQUENTIAL SMALLINT)

SCHEMANAME
An input argument of type VARCHAR(128) that specifies the schema of the table.
Passing a null will result in an error.

TABLENAME
An input argument of type VARCHAR(128) that specifies the table name of the table.
The string must exactly match the case of the table name, and the argument of "Fred"
will be passed to SQL as the delimited identifier 'Fred'. Passing a null will result in an
error.

SEQUENTIAL
A non-zero input argument of type SMALLINT will force the operation to run in
sequential mode, while an argument of 0 will force the operation not to run in
sequential mode. Passing a null will result in an error.

SQL example

Java DB Reference Manual

126

To compress a table called CUSTOMER in a schema called US, using the SEQUENTIAL
option:

call SYSCS_UTIL.SYSCS_COMPRESS_TABLE('US', 'CUSTOMER', 1)

Java example

To compress a table called CUSTOMER in a schema called US, using the SEQUENTIAL
option:

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_COMPRESS_TABLE(?, ?, ?)");
cs.setString(1, "US");
cs.setString(2, "CUSTOMER");
cs.setShort(3, (short) 1);
cs.execute();

If the SEQUENTIAL parameter is not specified, Derby rebuilds all indexes concurrently
with the base table. If you do not specify the SEQUENTIAL argument, this procedure
can be memory-intensive and use a lot of temporary disk space (an amount equal to
approximately two times the used space plus the unused, allocated space). This is
because Derby compresses the table by copying active rows to newly allocated space
(as opposed to shuffling and truncating the existing space). The extra space used is
returned to the operating system on COMMIT.

When SEQUENTIAL is specified, Derby compresses the base table and then
compresses each index sequentially. Using SEQUENTIAL uses less memory and disk
space, but is more time-intensive. Use the SEQUENTIAL argument to reduce memory
and disk space usage.

SYSCS_UTIL.SYSCS_COMPRESS_TABLE cannot release any permanent disk space
back to the operating system until a COMMIT is issued. This means that the space
occupied by both the base table and its indexes cannot be released. Only the disk space
that is temporarily claimed by an external sort can be returned to the operating system
prior to a COMMIT.
Tip: We recommend that you issue the SYSCS_UTIL.SYSCS_COMPRESS_TABLE
system procedure in the auto-commit mode.

Note: This procedure acquires an exclusive table lock on the table being compressed.
All statement plans dependent on the table or its indexes are invalidated. For information
on identifying unused space, see the Java DB Server and Administration Guide.

SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE system procedure

Use the SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE system procedure to
reclaim unused, allocated space in a table and its indexes. Typically, unused allocated
space exists when a large amount of data is deleted from a table and there has not been
any subsequent inserts to use the space created by the deletes. By default, Derby does
not return unused space to the operating system. For example, once a page has been
allocated to a table or index, it is not automatically returned to the operating system until
the table or index is destroyed. SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE
allows you to return unused space to the operating system.

This system procedure can be used to force three levels of in-place compression
of a SQL table: PURGE_ROWS, DEFRAGMENT_ROWS, and TRUNCATE_END. Unlike
SYSCS_UTIL.SYSCS_COMPRESS_TABLE(), all work is done in place in the existing
table/index.

Syntax

SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE(
 IN SCHEMANAME VARCHAR(128),

Java DB Reference Manual

127

 IN TABLENAME VARCHAR(128),
 IN PURGE_ROWS SMALLINT,
 IN DEFRAGMENT_ROWS SMALLINT,
 IN TRUNCATE_END SMALLINT)

SCHEMANAME
An input argument of type VARCHAR(128) that specifies the schema of the table.
Passing a null will result in an error.

TABLENAME
An input argument of type VARCHAR(128) that specifies the table name of the table.
The string must exactly match the case of the table name, and the argument of "Fred"
will be passed to SQL as the delimited identifier 'Fred'. Passing a null will result in an
error.

PURGE_ROWS
If PURGE_ROWS is set to a non-zero value, then a single pass is made through
the table which will purge committed deleted rows from the table. This space is then
available for future inserted rows, but remains allocated to the table. As this option
scans every page of the table, its performance is linearly related to the size of the
table.

DEFRAGMENT_ROWS
If DEFRAGMENT_ROWS is set to a non-zero value, then a single defragment pass
is made which will move existing rows from the end of the table towards the front of
the table. The goal of defragmentation is to empty a set of pages at the end of the
table which can then be returned to the operating system by the TRUNCATE_END
option. It is recommended to only run DEFRAGMENT_ROWS if also specifying the
TRUNCATE_END option. The DEFRAGMENT_ROWS option scans the whole table
and needs to update index entries for every base table row move, so the execution
time is linearly related to the size of the table.

TRUNCATE_END
If TRUNCATE_END is set to a non-zero value, then all contiguous pages at the end
of the table will be returned to the operating system. Running the PURGE_ROWS
and/or DEFRAGMENT_ROWS options may increase the number of pages affected.
This option by itself performs no scans of the table.

SQL example
To compress a table called CUSTOMER in a schema called US, using all available
compress options:

call SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE('US', 'CUSTOMER', 1, 1, 1);

To return the empty free space at the end of the same table, the following call will run
much quicker than running all options but will likely return much less space:

call SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE('US', 'CUSTOMER', 0, 0, 1);

Java example
To compress a table called CUSTOMER in a schema called US, using all available
compress options:

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE(?, ?, ?, ?, ?)");
cs.setString(1, "US");
cs.setString(2, "CUSTOMER");
cs.setShort(3, (short) 1);
cs.setShort(4, (short) 1);
cs.setShort(5, (short) 1);
cs.execute();

To return the empty free space at the end of the same table, the following call will run
much quicker than running all options but will likely return much less space:

Java DB Reference Manual

128

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE(?, ?, ?, ?, ?)");
cs.setString(1, "US");
cs.setString(2, "CUSTOMER");
cs.setShort(3, (short) 0);
cs.setShort(4, (short) 0);
cs.setShort(5, (short) 1);
cs.execute();

Tip: We recommend that you issue the
SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE system procedure in the
auto-commit mode.
Note: This procedure acquires an exclusive table lock on the table being compressed.
All statement plans dependent on the table or its indexes are invalidated. For information
on identifying unused space, see the Java DB Server and Administration Guide.

SYSCS_UTIL.SYSCS_DISABLE_LOG_ARCHIVE_MODE system procedure

The SYSCS_UTIL.SYSCS_DISABLE_LOG_ARCHIVE_MODE system procedure
disables the log archive mode and deletes any existing online archived log files if the
DELETE_ARCHIVED_LOG_FILES input parameter is non-zero.

Syntax

SYSCS_UTIL.SYSCS_DISABLE_LOG_ARCHIVE_MODE(IN SMALLINT
 DELETE_ARCHIVED_LOG_FILES)

No result is returned from the procedure.

DELETE_ARCHIVED_LOG_FILES
If the input parameter value for the DELETE_ARCHIVED_LOG_FILES parameter is a
non-zero value, then all existing online archived log files are deleted. If the parameter
value is zero, then exiting online archived log files are not deleted.

JDBC example

The following example disables log archive mode for the database and deletes any
existing log archive files.

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_DISABLE_LOG_ARCHIVE_MODE(?)");
cs.setInt(1, 1);
cs.execute();
cs.close();

SQL examples

The following example disables log archive mode for the database and retains any
existing log archive files:

CALL SYSCS_UTIL.SYSCS_DISABLE_LOG_ARCHIVE_MODE
 DELETE_ARCHIVED_LOG_FILES(0);

The following example disables log archive mode for the database and deletes any
existing log archive files:

CALL SYSCS_UTIL.SYSCS_DISABLE_LOG_ARCHIVE_MODE
 DELETE_ARCHIVED_LOG_FILES(1);

SYSCS_UTIL.SYSCS_EXPORT_TABLE system procedure

The SYSCS_UTIL.SYSCS_EXPORT_TABLE system procedure exports all of the data
from a table to an operating system file in a delimited data file format.

Java DB Reference Manual

129

Syntax

SYSCS_UTIL.SYSCS_EXPORT_TABLE (IN SCHEMANAME VARCHAR(128),
IN TABLENAME VARCHAR(128), IN FILENAME VARCHAR(32672),
IN COLUMNDELIMITER CHAR(1), IN CHARACTERDELIMITER CHAR(1),
IN CODESET VARCHAR(128))

No result is returned from the procedure.

SCHEMANAME
An input argument of type VARCHAR(128) that specifies the schema name of the
table. Passing a NULL value will use the default schema name.

TABLENAME
An input argument of type VARCHAR(128) that specifies the name of the table/view
from which the data is to be exported. Passing a null will result in an error.

FILENAME
An input argument of type VARCHAR(32672) that specifies the name of the file to
which data is to be exported. If the complete path to the file is not specified, the
export procedure uses the current directory and the default drive as the destination. If
the name of a file that already exists is specified, the export procedure overwrites the
contents of the file; it does not append the information. Passing a null will result in an
error.

COLUMNDELIMITER
An input argument of type CHAR(1) that specifies a column delimiter. The specified
character is used in place of a comma to signal the end of a column. Passing a NULL
value will use the default value; the default value is a comma (,).

CHARACTERDELIMITER
An input argument of type CHAR(1) that specifies a character delimiter. The specified
character is used in place of double quotation marks to enclose a character string.
Passing a NULL value will use the default value; the default value is a double
quotation mark (").

CODESET
An input argument of type VARCHAR(128) that specifies the code set of the data
in the exported file. The name of the code set should be one of the Java-supported
character encodings. Data is converted from the database code set to the specified
code set before writing to the file. Passing a NULL value will write the data in the
same code set as the JVM in which it is being executed.

If you create a schema or table name as a non-delimited identifier, you must pass the
name to the export procedure using all uppercase characters. If you created a schema,
table, or column name as a delimited identifier, you must pass the name to the export
procedure using the same case that was used when it was created.

Usage

For additional information on using this procedure see the section "Using the bulk import
and export procedures" in the Java DB Tools and Utilities Guide.

Example

The following example shows how to export information from the STAFF table in a
SAMPLE database to the myfile.del file.

CALL SYSCS_UTIL.SYSCS_EXPORT_TABLE (null, 'STAFF', 'myfile.del', null,
 null, null);

SYSCS_UTIL.SYSCS_EXPORT_TABLE_LOBS_TO_EXTFILE system procedure

Use the SYSCS_UTIL.SYSCS_EXPORT_TABLE_LOBS_TO_EXTFILE system procedure
to export all the data from a table, and place the LOB data into a separate export file. A

Java DB Reference Manual

130

reference to the location of the LOB data is placed in the LOB column in the main export
file.

Syntax

SYSCS_UTIL.SYSCS_EXPORT_TABLE_LOBS_TO_EXTFILE (
 IN SCHEMANAME VARCHAR(128),
 IN TABLENAME VARCHAR(128),
 IN FILENAME VARCHAR(32672),
 IN COLUMNDELIMITER CHAR(1),
 IN CHARACTERDELIMITER CHAR(1),
 IN CODESET VARCHAR(128)
 IN LOBSFILENAME VARCHAR(32672)
)

When you run this procedure, the column data is written to the main export file in a
delimited data file format.

SCHEMANAME
Specifies the schema of the table. You can specify a NULL value to use the default
schema name. The SCHEMANAME parameter takes an input argument that is a
VARCHAR (128) data type.

TABLENAME
Specifies the table name of the table or view from which the data is to be exported.
This table cannot be a system table or a declared temporary table. The string must
exactly match the case of the table name. Specifying a NULL value results in an
error. The TABLENAME parameter takes an input argument that is a VARCHAR
(128) data type.

FILENAME
Specifies the file to which the data is to be exported. If the path is omitted, the current
working directory is used. If the name of a file that already exists is specified, the
export utility overwrites the contents of the file; it does not append the information.
The specified location of the file should refer to the server-side location if you
are using the Network Server. Specifying a NULL value results in an error. The
FILENAME parameter takes an input argument that is a VARCHAR (32672) data
type.

COLUMNDELIMITER
Specifies a column delimiter. The specified character is used in place of a comma to
signify the end of a column. You can specify a NULL value to use the default value of
a comma. The COLUMNDELIMITER parameter must be a CHAR (1) data type.

CHARACTERDELIMITER
Specifies a character delimiter. The specified character is used in place of double
quotation marks to enclose a character string. You can specify a NULL value to
use the default value of a double quotation mark. The CHARACTERDELIMITER
parameter takes an input argument that is a CHAR (1) data type.

CODESET
Specifies the code set of the data in the export file. The code set name should be one
of the Java-supported character encoding sets. Data is converted from the database
code page to the specified code page before writing to the file. You can specify a
NULL value to write the data in the same code page as the JVM in which it is being
executed. The CODESET parameter takes an input argument that is a VARCHAR
(128) data type.

LOBSFILENAME
Specifies the file that the large object data is exported to. If the path is omitted,
the lob file is created in the same directory as the main export file. If you specify
the name of an existing file, the export utility overwrites the contents of the file.
The data is not appended to the file. If you are using the Network Server, the file
should be in a server-side location. Specifying a NULL value results in an error. The

Java DB Reference Manual

131

LOBSFILENAME parameter takes an input argument that is a VARCHAR (32672)
data type.

If you create a schema, table, or column name as a non-delimited identifier, you must
pass the name to the export procedure using all uppercase characters. If you created a
schema or table name as a delimited identifier, you must pass the name to the export
procedure using the same case that was used when it was created.

Usage

For additional information on using this procedure see the section "Using the bulk import
and export procedures" in the Java DB Tools and Utilities Guide.

Example exporting all data from a table, using a separate export file for the LOB
data

The following example shows how to export data from the STAFF table in a sample
database to the main file staff.del and the LOB export file pictures.dat.

CALL SYSCS_UTIL.SYSCS_EXPORT_TABLE_LOBS_TO_EXTFILE(
 'APP', 'STAFF', 'c:\data\staff.del', ',' ,'"',
 'UTF-8', 'c:\data\pictures.dat');

SYSCS_UTIL.SYSCS_EXPORT_QUERY system procedure

The SYSCS_UTIL.SYSCS_EXPORT_QUERY system procedure exports the results of a
SELECT statement to an operating system file in a delimited data file format.

Syntax

SYSCS_UTIL.SYSCS_EXPORT_QUERY(IN SELECTSTATEMENT VARCHAR(32672),
IN FILENAME VARCHAR(32672), IN COLUMNDELIMITER CHAR(1),
IN CHARACTERDELIMITER CHAR(1), IN CODESET VARCHAR(128))

No result is returned from the procedure.

SELECTSTATEMENT
An input argument of type VARCHAR(32672) that specifies the select statement
(query) that will return the data to be exported. Passing a NULL value will result in an
error.

FILENAME
An input argument of type VARCHAR(32672) that specifies the name of the file to
which data is to be exported. If the complete path to the file is not specified, the
export procedure uses the current directory and the default drive as the destination. If
the name of a file that already exists is specified, the export procedure overwrites the
contents of the file; it does not append the information. Passing a null will result in an
error.

COLUMNDELIMITER
An input argument of type CHAR(1) that specifies a column delimiter. The specified
character is used in place of a comma to signal the end of a column. Passing a NULL
value will use the default value; the default value is a comma (,).

CHARACTERDELIMITER
An input argument of type CHAR(1) that specifies a character delimiter. The specified
character is used in place of double quotation marks to enclose a character string.
Passing a NULL value will use the default value; the default value is a double
quotation mark (").

CODESET
An input argument of type VARCHAR(128) that specifies the code set of the data
in the exported file. The name of the code set should be one of the Java-supported
character encodings. Data is converted from the database code set to the specified

Java DB Reference Manual

132

code set before writing to the file. Passing a NULL value will write the data in the
same code set as the JVM in which it is being executed.

Usage

For additional information on using this procedure see the section "Using the bulk import
and export procedures" in the Java DB Tools and Utilities Guide.

Example

The following example shows how to export the information about employees in
Department 20 from the STAFF table in the SAMPLE database to the myfile.del file.

CALL SYSCS_UTIL.SYSCS_EXPORT_QUERY('select * from staff where dept =20',
 'c:/output/awards.del', null, null, null);

SYSCS_UTIL.SYSCS_EXPORT_QUERY_LOBS_TO_EXTFILE system procedure

Use the SYSCS_UTIL.SYSCS_EXPORT_QUERY_LOBS_TO_EXTFILE system procedure
to export the result of a SELECT statement to a main export file, and place the LOB data
into a separate export file. A reference to the location of the LOB data is placed in the
LOB column in the main export file.

Syntax

SYSCS_UTIL.SYSCS_EXPORT_QUERY_LOBS_TO_EXTFILE (
 IN SELECTSTATEMENT VARCHAR(32672),
 IN FILENAME VARCHAR(32672),
 IN COLUMNDELIMITER CHAR(1),
 IN CHARACTERDELIMITER CHAR(1),
 IN CODESET VARCHAR(128)
 IN LOBSFILENAME VARCHAR(32672)
)

When you run this procedure, the column data is written to the main export file in a
delimited data file format.

SELECTSTATEMENT
Specifies the SELECT statement query that returns the data to be exported.
Specifying a NULL value will result in an error. The SELECTSTATEMENT parameter
takes an input argument that is a VARCHAR (32672) data type.

FILENAME
Specifies the file to which the data is to be exported. If the path is omitted, the current
working directory is used. If the name of a file that already exists is specified, the
export utility overwrites the contents of the file; it does not append the information.
The specified location of the file should refer to the server-side location if you
are using the Network Server. Specifying a NULL value results in an error. The
FILENAME parameter takes an input argument that is a VARCHAR (32672) data
type.

COLUMNDELIMITER
Specifies a column delimiter. The specified character is used in place of a comma to
signify the end of a column. You can specify a NULL value to use the default value of
a comma. The COLUMNDELIMITER parameter must be a CHAR (1) data type.

CHARACTERDELIMITER
Specifies a character delimiter. The specified character is used in place of double
quotation marks to enclose a character string. You can specify a NULL value to
use the default value of a double quotation mark. The CHARACTERDELIMITER
parameter takes an input argument that is a CHAR (1) data type.

CODESET
Specifies the code set of the data in the export file. The code set name should be one
of the Java-supported character encoding sets. Data is converted from the database

Java DB Reference Manual

133

code page to the specified code page before writing to the file. You can specify a
NULL value to write the data in the same code page as the JVM in which it is being
executed. The CODESET parameter takes an input argument that is a VARCHAR
(128) data type.

LOBSFILENAME
Specifies the file that the large object data is exported to. If the path is omitted,
the lob file is created in the same directory as the main export file. If you specify
the name of an existing file, the export utility overwrites the contents of the file.
The data is not appended to the file. If you are using the Network Server, the file
should be in a server-side location. Specifying a NULL value results in an error. The
LOBSFILENAME parameter takes an input argument that is a VARCHAR (32672)
data type.

Usage

For additional information on using this procedure see the section "Using the bulk import
and export procedures" in the Java DB Tools and Utilities Guide.

Example exporting data from a query using a separate export file for the LOB data
The following example shows how to export employee data in department 20 from the
STAFF table in a sample database to the main file staff.del and the lob data to the
file pictures.dat.

CALL SYSCS_UTIL.SYSCS_EXPORT_QUERY_LOBS_TO_EXTFILE(
 'SELECT * FROM STAFF WHERE dept=20',
 'c:\data\staff.del', ',' ,'"',
 'UTF-8','c:\data\pictures.dat');

SYSCS_UTIL.SYSCS_IMPORT_DATA system procedure

The SYSCS_UTIL.SYSCS_IMPORT_DATA system procedure imports data to a subset of
columns in a table. You choose the subset of columns by specifying insert columns. This
procedure is also used to import a subset of column data from a file by specifying column
indexes.

Syntax

SYSCS_UTIL.SYSCS_IMPORT_DATA (IN SCHEMANAME VARCHAR(128),
IN TABLENAME VARCHAR(128), IN INSERTCOLUMNS VARCHAR(32672),
IN COLUMNINDEXES VARCHAR(32672), IN FILENAME VARCHAR(32672),
IN COLUMNDELIMITER CHAR(1), IN CHARACTERDELIMITER CHAR(1),
IN CODESET VARCHAR(128), IN REPLACE SMALLINT)

No result is returned from the procedure.

SCHEMANAME
An input argument of type VARCHAR(128) that specifies the schema of the table.
Passing a NULL value will use the default schema name.

TABLENAME
An input argument of type VARCHAR (128) that specifies the table name of the
table into which the data is to be imported. This table cannot be a system table or a
declared temporary table. Passing a null will result in an error.

INSERTCOLUMNS
An input argument of type VARCHAR (32762) that specifies the column names
(separated by commas) of the table into which the data is to be imported. Passing a
NULL value will import the data into all of the columns of the table.

COLUMNINDEXES
An input argument of type VARCHAR (32762) that specifies the indexes (numbered
from 1 and separated by commas) of the input data fields to be imported. Passing a
NULL value will use all of the input data fields in the file.

Java DB Reference Manual

134

FILENAME
An input argument of type VARCHAR(32672) that specifies the file that contains
the data to be imported. If you do not specify a path, the current working directory is
used. Passing a NULL value will result in an error.

COLUMNDELIMITER
An input argument of type CHAR(1) that specifies a column delimiter. The specified
character is used in place of a comma to signal the end of a column. Passing a NULL
value will use the default value; the default value is a comma (,).

CHARACTERDELIMITER
An input argument of type CHAR(1) that specifies a character delimiter. The specified
character is used in place of double quotation marks to enclose a character string.
Passing a NULL value will use the default value; the default value is a double
quotation mark (").

CODESET
An input argument of type VARCHAR(128) that specifies the code set of the data
in the input file. The name of the code set should be one of the Java-supported
character encodings. Data is converted from the specified code set to the database
code set (utf-8). Passing a NULL value will interpret the data file in the same code set
as the JVM in which it is being executed.

REPLACE
A input argument of type SMALLINT. A non-zero value will run in REPLACE mode,
while a value of zero will run in INSERT mode. REPLACE mode deletes all existing
data from the table by truncating the data object, and inserts the imported data.
The table definition and the index definitions are not changed. You can only use the
REPLACE mode if the table exists. INSERT mode adds the imported data to the table
without changing the existing table data. Passing a NULL will result in an error.

If you create a schema, table, or column name as a non-delimited identifier, you must
pass the name to the import procedure using all uppercase characters. If you created a
schema, table, or column name as a delimited identifier, you must pass the name to the
import procedure using the same case that was used when it was created.

Usage

For additional information on using this procedure see the section "Using the bulk import
and export procedures" in the Java DB Tools and Utilities Guide.

Example
The following example imports some of the data fields from a delimited data file called
data.del into the STAFF table:

CALL SYSCS_UTIL.SYSCS_IMPORT_DATA
 (NULL, 'STAFF', null, '1,3,4', 'data.del', null, null, null,0)

SYSCS_UTIL.SYSCS_IMPORT_DATA_LOBS_FROM_EXTFILE system procedure

Use the SYSCS_UTIL.SYSCS_IMPORT_DATA_LOBS_FROM_EXTFILE system procedure
to import data to a subset of columns in a table, where the LOB data is stored in a
separate file. The main import file contains all of the other data and a reference to the
location of the LOB data.

Syntax

SYSCS_UTIL.SYSCS_IMPORT_DATA_LOBS_FROM_EXTFILE (
 IN SCHEMANAME VARCHAR(128),
 IN TABLENAME VARCHAR(128),
 IN INSERTCOLUMNS VARCHAR(32672),
 IN COLUMNINDEXES VARCHAR(32672),
 IN FILENAME VARCHAR(32672),
 IN COLUMNDELIMITER CHAR(1),

Java DB Reference Manual

135

 IN CHARACTERDELIMITER CHAR(1),
 IN CODESET VARCHAR(128),
 IN REPLACE SMALLINT)
)

The import utility looks in the main import file for a reference to the location of the LOB
data.

SCHEMANAME
Specifies the schema of the table. You can specify a NULL value to use the default
schema name. The SCHEMANAME parameter takes an input argument that is a
VARCHAR (128) data type.

TABLENAME
Specifies the name of the table into which the data is to be imported. This table
cannot be a system table or a declared temporary table. The string must exactly
match case of the table name. Specifying a NULL value results in an error. The
TABLENAME parameter takes an input argument that is a VARCHAR (128) data
type.

INSERTCOLUMNS
Specifies the comma separated column names of the table into which the data will be
imported. You can specify a NULL value to import into all columns of the table. The
INSERTCOLUMNS parameter takes an input argument that is a VARCHAR (32672)
data type.

COLUMNINDEXES
Specifies the comma separated column indexes (numbered from one) of the input
data fields that will be imported. You can specify a NULL value to use all input data
fields in the file. The COLUMNINDEXES parameter takes an input argument that is a
VARCHAR (32762) data type.

FILENAME
Specifies the name of the file that contains the data to be imported. If the path is
omitted, the current working directory is used. The specified location of the file should
refer to the server side location if using the Network Server. Specifying a NULL
value results in an error. The fileName parameter takes an input argument that is a
VARCHAR (32672) data type.

COLUMNDELIMITER
Specifies a column delimiter. The specified character is used in place of a comma to
signify the end of a column. You can specify a NULL value to use the default value
of a comma. The COLUMNDELIMITER parameter takes an input argument that is a
CHAR (1) data type.

CHARACTERDELIMITER
Specifies a character delimiter. The specified character is used in place of double
quotation marks to enclose a character string. You can specify a NULL value to
use the default value of a double quotation mark. The CHARACTERDELIMITER
parameter takes an input argument that is a CHAR (1) data type.

CODESET
Specifies the code set of the data in the input file. The code set name should be one
of the Java-supported character encoding sets. Data is converted from the specified
code set to the database code set (UTF-8). You can specify a NULL value to interpret
the data file in the same code set as the JVM in which it is being executed. The
CODESET parameter takes an input argument that is a VARCHAR (128) data type.

REPLACE
A non-zero value for the replace parameter will import in REPLACE mode, while
a zero value will import in INSERT mode. REPLACE mode deletes all existing
data from the table by truncating the table and inserts the imported data. The table
definition and the index definitions are not changed. You can only import with
REPLACE mode if the table already exists. INSERT mode adds the imported data to
the table without changing the existing table data. Specifying a NULL value results in

Java DB Reference Manual

136

an error. The REPLACE parameter takes an input argument that is a SMALLINT data
type.

If you create a schema, table, or column name as a non-delimited identifier, you must
pass the name to the import procedure using all uppercase characters. If you created a
schema, table, or column name as a delimited identifier, you must pass the name to the
import procedure using the same case that was used when it was created.

Usage

This procedure will read the LOB data using the reference that is stored in the main
import file. The format of the reference to the LOB stored in the main import file must be
lobsFileName.Offset.length/.

• Offset is position in the external file in bytes
• length is the size of the LOB column data in bytes

For additional information on using this procedure see the section "Using the bulk import
and export procedures" in the Java DB Tools and Utilities Guide.

Example importing data into specific columns, using a separate import file for the
LOB data
The following example shows how to import data into several columns of the STAFF
table. The STAFF table includes a LOB column in a sample database. The import file
staff.del is a delimited data file. The staff.del file contains references that point
to a separate file which contains the LOB data. The data in the import file is formatted
using double quotation marks (") as the string delimiter and a comma (,) as the column
delimiter. The data will be appended to the existing data in the STAFF table.

CALL SYSCS_UTIL.SYSCS_IMPORT_DATA_LOBS_FROM_EXTFILE
 (null, 'STAFF', 'NAME,DEPT,SALARY,PICTURE', '2,3,4,6',
 'c:\data\staff.del', ',','"','UTF-8', 0);

SYSCS_UTIL.SYSCS_IMPORT_TABLE system procedure

The SYSCS_UTIL.SYSCS_IMPORT_TABLE system procedure imports data from an
input file into all of the columns of a table. If the table receiving the imported data already
contains data, you can either replace or append to the existing data.

Syntax

SYSCS_UTIL.SYSCS_IMPORT_TABLE (IN SCHEMANAME VARCHAR(128),
IN TABLENAME VARCHAR(128), IN FILENAME VARCHAR(32672),
IN COLUMNDELIMITER CHAR(1), IN CHARACTERDELIMITER CHAR(1),
IN CODESET VARCHAR(128), IN REPLACE SMALLINT)

No result is returned from the procedure.

SCHEMANAME
An input argument of type VARCHAR(128) that specifies the schema of the table.
Passing a NULL value will use the default schema name.

TABLENAME
An input argument of type VARCHAR (128) that specifies the table name of the
table into which the data is to be imported. This table cannot be a system table or a
declared temporary table. Passing a null will result in an error.

FILENAME
An input argument of type VARCHAR(32672) that specifies the file that contains
the data to be imported. If you do not specify a path, the current working directory is
used. Passing a NULL value will result in an error.

COLUMNDELIMITER

Java DB Reference Manual

137

An input argument of type CHAR(1) that specifies a column delimiter. The specified
character is used in place of a comma to signal the end of a column. Passing a NULL
value will use the default value; the default value is a comma (,).

CHARACTERDELIMITER
An input argument of type CHAR(1) that specifies a character delimiter. The specified
character is used in place of double quotation marks to enclose a character string.
Passing a NULL value will use the default value; the default value is a double
quotation mark (").

CODESET
An input argument of type VARCHAR(128) that specifies the code set of the data
in the input file. The name of the code set should be one of the Java-supported
character encodings. Data is converted from the specified code set to the database
code set (utf-8). Passing a NULL value will interpret the data file in the same code set
as the JVM in which it is being executed.

REPLACE
A input argument of type SMALLINT. A non-zero value will run in REPLACE mode,
while a value of zero will run in INSERT mode. REPLACE mode deletes all existing
data from the table by truncating the data object, and inserts the imported data. The
table definition and the index definitions are not changed. INSERT mode adds the
imported data to the table without changing the existing table data. Passing a NULL
will result in an error.

If you create a schema, table, or column name as a non-delimited identifier, you must
pass the name to the import procedure using all uppercase characters. If you created a
schema, table, or column name as a delimited identifier, you must pass the name to the
import procedure using the same case that was used when it was created.

Usage

For additional information on using this procedure see the section "Using the bulk import
and export procedures" in the Java DB Tools and Utilities Guide.

Example
The following example imports data into the STAFF table from a delimited data file called
myfile.del with the percentage character (%) as the string delimiter, and a semicolon
(;) as the column delimiter:

CALL SYSCS_UTIL.SYSCS_IMPORT_TABLE
 (null, 'STAFF', 'c:/output/myfile.del', ';', '%', null,0);

SYSCS_UTIL.SYSCS_IMPORT_TABLE_LOBS_FROM_EXTFILE system procedure

Use the SYSCS_UTIL.SYSCS_IMPORT_TABLE_LOBS_FROM_EXTFILE system
procedure to import data to a table, where the LOB data is stored in a separate file. The
main import file contains all of the other data and a reference to the location of the LOB
data.

Syntax

SYSCS_UTIL.SYSCS_IMPORT_TABLE_LOBS_FROM_EXTFILE (
 IN SCHEMANAME VARCHAR(128),
 IN TABLENAME VARCHAR(128),
 IN FILENAME VARCHAR(32672),
 IN COLUMNDELIMITER CHAR(1),
 IN CHARACTERDELIMITER CHAR(1),
 IN CODESET VARCHAR(128),
 IN REPLACE SMALLINT)
)

The import utility looks in the main import file for a reference to the location of the LOB
data.

Java DB Reference Manual

138

SCHEMANAME
Specifies the schema of the table. You can specify a NULL value to use the default
schema name. The SCHEMANAME parameter takes an input argument that is a
VARCHAR (128) data type.

TABLENAME
Specifies the name of the table into which the data is to be imported. This table
cannot be a system table or a declared temporary table. The string must exactly
match case of the table name. Specifying a NULL value results in an error. The
TABLENAME parameter takes an input argument that is a VARCHAR (128) data
type.

FILENAME
Specifies the name of the file that contains the data to be imported. If the path is
omitted, the current working directory is used. The specified location of the file should
refer to the server side location if using the Network Server. Specifying a NULL value
results in an error. The FILENAME parameter takes an input argument that is a
VARCHAR (32672) data type.

COLUMNDELIMITER
Specifies a column delimiter. The specified character is used in place of a comma to
signify the end of a column. You can specify a NULL value to use the default value
of a comma. The COLUMNDELIMITER parameter takes an input argument that is a
CHAR (1) data type.

CHARACTERDELIMITER
Specifies a character delimiter. The specified character is used in place of double
quotation marks to enclose a character string. You can specify a NULL value to
use the default value of a double quotation mark. The CHARACTERDELIMITER
parameter takes an input argument that is a CHAR (1) data type.

CODESET
Specifies the code set of the data in the input file. The code set name should be one
of the Java-supported character encoding sets. Data is converted from the specified
code set to the database code set (UTF-8). You can specify a NULL value to interpret
the data file in the same code set as the JVM in which it is being executed. The
CODESET parameter takes an input argument that is a VARCHAR (128) data type.

REPLACE
A non-zero value for the replace parameter will import in REPLACE mode, while
a zero value will import in INSERT mode. REPLACE mode deletes all existing
data from the table by truncating the table and inserts the imported data. The table
definition and the index definitions are not changed. You can only import with
REPLACE mode if the table already exists. INSERT mode adds the imported data to
the table without changing the existing table data. Specifying a NULL value results in
an error. The REPLACE parameter takes an input argument that is a SMALLINT data
type.

If you create a schema, table, or column name as a non-delimited identifier, you must
pass the name to the import procedure using all uppercase characters. If you created a
schema, table, or column name as a delimited identifier, you must pass the name to the
import procedure using the same case that was used when it was created.

Usage

This procedure will read the LOB data using the reference that is stored in the main
import file. If you are importing from a non-Derby source, the format of the reference to
the LOB stored in the main import file must be lobsFileName.Offset.length/.

• Offset is position in the external file in bytes
• length is the size of the LOB column data in bytes

For additional information on using this procedure see the section "Using the bulk import
and export procedures" in the Java DB Tools and Utilities Guide.

Java DB Reference Manual

139

Example importing data from a main import file that contains references which
point to a separate file that contains LOB data

The following example shows how to import data into the STAFF table in a sample
database from a delimited data file staff.del. This example defines a comma as the
column delimiter. The data will be appended to the existing data in the table.

CALL SYSCS_UTIL.SYSCS_IMPORT_TABLE_LOBS_FROM_EXTFILE(
 'APP','STAFF','c:\data\staff.del',',','"','UTF-8',0);

SYSCS_UTIL.SYSCS_FREEZE_DATABASE system procedure

The SYSCS_UTIL.SYSCS_FREEZE_DATABASE system procedure temporarily freezes
the database for backup.

Syntax

SYSCS_UTIL.SYSCS_FREEZE_DATABASE()

No result set is returned by this procedure.

Example

String backupdirectory = "c:/mybackups/" + JCalendar.getToday();
CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_FREEZE_DATABASE()");
cs.execute();
cs.close();
// user supplied code to take full backup of "backupdirectory"
// now unfreeze the database once backup has completed:
CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE()");
cs.execute();
cs.close();

SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE system procedure

The SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE system procedure unfreezes a
database after backup.

Syntax

SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE()

No result set is returned by this procedure.

Example

String backupdirectory = "c:/mybackups/" + JCalendar.getToday();
CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_FREEZE_DATABASE()");
cs.execute();
cs.close();
// user supplied code to take full backup of "backupdirectory"
// now unfreeze the database once backup has completed:
CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE()");
cs.execute();
cs.close();

SYSCS_UTIL.SYSCS_RELOAD_SECURITY_POLICY system procedure

The SYSCS_UTIL.SYSCS_RELOAD_SECURITY_POLICY system procedure reloads
the security policy, allowing you to fine-tune your Java security on the fly. For more

Java DB Reference Manual

140

information on security policies, see the section titled "Running the Network Server under
the security manager" in the Java DB Server and Administration Guide and the section
titled "Running Derby under a security manager" in the Java DB Developer's Guide.

Syntax

SYSCS_UTIL.SYSCS_RELOAD_SECURITY_POLICY()

No result set is returned by this procedure.

Example

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_RELOAD_SECURITY_POLICY()");
cs.execute();
cs.close();

SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY system procedure

Use the SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY system procedure to set or
delete the value of a property of the database on the current connection.

If "VALUE" is not null, then the property with key value "KEY" is set to "VALUE". If
"VALUE" is null, then the property with key value "KEY" is deleted from the database
property set.

Syntax

SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY(IN KEY VARCHAR(128),
IN VALUE VARCHAR(32672))

This procedure does not return any results.

JDBC example

Set the derby.locks.deadlockTimeout property to a value of 10:

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(?, ?)");
cs.setString(1, "derby.locks.deadlockTimeout");
cs.setString(2, "10");
cs.execute();
cs.close();

SQL example

Set the derby.locks.deadlockTimeout property to a value of 10:

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY
('derby.locks.deadlockTimeout', '10');

SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS system procedure

The SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS() system procedure turns a
connection's runtime statistics on or off. By default, the runtime statistics are turned off.
When the runtimestatistics attribute is turned on, Derby maintains information
about the execution plan for each statement executed within the connection (except for
COMMIT) until the attribute is turned off. To turn the runtimestatistics attribute off,
call the procedure with an argument of zero. To turn the runtimestatistics on, call
the procedure with any non-zero argument.

For statements that do not return rows, the object is created when all internal processing
has completed before returning to the client program. For statements that return rows,

Java DB Reference Manual

141

the object is created when the first next() call returns 0 rows or if a close() call is
encountered, whichever comes first.

Syntax

SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS(IN SMALLINT ENABLE)

Example

-- establish a connection
-- turn on RUNTIMESTATISTIC for connection:
CALL SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS(1);
-- execute complex query here
-- step through the result sets
-- access runtime statistics information:
CALL SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS(0);

SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING system procedure

Statistics timing is an attribute associated with a connection that you turn on and off
by using the SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING system procedure.
Statistics timing is turned off by default. Turn statistics timing on only when the
runtimestatistics attribute is already on. Turning statistics timing on when the
runtimestatistics attribute is off has no effect.

Turn statistics timing on by calling this procedure with a non-zero argument. Turn
statistics timing off by calling the procedure with a zero argument.

When statistics timing is turned on, Derby tracks the timings of various aspects of the
execution of a statement. This information is included in the information returned by the
SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS system function. When statistics
timing is turned off, the SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS system
function shows all timing values as zero.

Syntax

SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING(IN SMALLINT ENABLE)

Example

To turn the runtimestatistics attribute and then the statistics timing attribute on:

CALL SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS(1);
CALL SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING(1);

SYSCS_DIAG diagnostic tables and functions
Derby provides a set of system table expressions which you can use to obtain diagnostic
information about the state of the database and about the database sessions.

There are two types of diagnostic table expressions in Derby:
Diagnostic tables

Tables that are like any other table in Derby. You can specify the diagnostic table
name anywhere a normal table name is allowed.

Diagnostic table functions
Functions that are like any other function in Derby. Diagnostic table functions can
accept zero or more arguments, depending on the table function that you use. You
must use the SQL-defined table function syntax to access these functions.

The following table shows the types and names of the diagnostic table expressions in
Derby.

Java DB Reference Manual

142

Table 9. System diagnostic table expressions provided by Derby

Diagnostic table expression Type of expression

SYSCS_DIAG.ERROR_LOG_READER Table function

SYSCS_DIAG.ERROR_MESSAGES Table

SYSCS_DIAG.LOCK_TABLE Table

SYSCS_DIAG.SPACE_TABLE Table function

SYSCS_DIAG.STATEMENT_CACHE Table

SYSCS_DIAG.STATEMENT_DURATION Table function

SYSCS_DIAG.TRANSACTION_TABLE Table

Restriction: If you reference a diagnostic table in a DDL statement or a compression
procedure, Derby returns an exception.

SYSCS_DIAG.ERROR_LOG_READER diagnostic table function

The SYSCS_DIAG.ERROR_LOG_READER diagnostic table function contains all the
useful SQL statements that are in the derby.log file or a log file that you specify.

One use of this diagnostic table function is to determine the active transactions and the
SQL statements in those transactions at a given point in time. For example, if a deadlock
or lock timeout occurred you can find the timestamp (timestampConstant) in the error log.

To access the SYSCS_DIAG.ERROR_LOG_READER diagnostic table function, you
must use the SQL table function syntax.

For example:

SELECT *
 FROM TABLE (SYSCS_DIAG.ERROR_LOG_READER())
 AS T1

where T1 is a user-specified table name that is any valid identifier.

You can specify a log file name as an optional argument to the
SYSCS_DIAG.ERROR_LOG_READER diagnostic table function. When you specify a log
file name, the file name must be an expression whose data type maps to a Java string.

For example:

SELECT *
 FROM TABLE (SYSCS_DIAG.ERROR_LOG_READER('myderbyerrors.log'))
 AS T1

Tip: By default Derby log files contain only boot, shutdown, and error messages.
In the Tuning Java DB guide, see the derby.stream.error.logSeverityLevel property
and the derby.language.logStatementText property for instructions on how to print
more information to Derby log files. You can then query that information by using the
SYSCS_DIAG.ERROR_LOG_READER diagnostic table function.

SYSCS_DIAG.ERROR_MESSAGES diagnostic table

The SYSCS_DIAG.ERROR_MESSAGES diagnostic table shows all of the SQLStates,
locale-sensitive error messages, and exception severities for a Derby database. You
can reference the SYSCS_DIAG.ERROR_MESSAGES diagnostic table directly in a
statement.

For example:

Java DB Reference Manual

143

SELECT * FROM SYSCS_DIAG.ERROR_MESSAGES

SYSCS_DIAG.LOCK_TABLE diagnostic table

The SYSCS_DIAG.LOCK_TABLE diagnostic table shows all of the locks
that are currently held in the Derby database. You can reference the
SYSCS_DIAG.LOCK_TABLE diagnostic table directly in a statement.

For example:

SELECT * FROM SYSCS_DIAG.LOCK_TABLE

When the SYSCS_DIAG.LOCK_TABLE diagnostic table is referenced in a statement,
a snap shot of the lock table is taken. A snap shot is used so that referencing the
diagnostic table does not alter the normal timing and flow of the application. It is possible
that some locks will be in a transition state when the snap shot is taken.

SYSCS_DIAG.SPACE_TABLE diagnostic table function

The SYSCS_DIAG.SPACE_TABLE diagnostic table function shows the space usage of a
particular table and its indexes. You can use this diagnostic table function to determine if
space might be saved by compressing the table and indexes.

To access the SYSCS_DIAG.SPACE_TABLE diagnostic table function, you must use
the SQL table function syntax. This diagnostic table function takes two arguments, the
schemaName and the tableName. The tableName argument is required. If you do not
specify the schemaName, the current schema is used.

For example, use the following query to return the space usage for all of the user tables
and indexes in the database:

SELECT T2.*
 FROM
 SYS.SYSTABLES systabs,
 TABLE (SYSCS_DIAG.SPACE_TABLE(systabs.tablename)) AS T2
 WHERE systabs.tabletype = 'T'

where T2 is a user-specified table name that is any valid identifier.

Both the schemaName and the tableName arguments must be expressions whose data
types map to Java strings. If the schemaName and the tableName are non-delimited
identifiers, you must specify the names in upper case.

For example:

SELECT *
 FROM TABLE (SYSCS_DIAG.SPACE_TABLE('MYSCHEMA', 'MYTABLE'))
 AS T2

SYSCS_DIAG.STATEMENT_CACHE diagnostic table

The SYSCS_DIAG.STATEMENT_CACHE diagnostic table shows the contents of the
SQL statement cache. You can reference the SYSCS_DIAG.STATEMENT_CACHE
diagnostic table directly in a statement.

For example:

SELECT * FROM SYSCS_DIAG.STATEMENT_CACHE

SYSCS_DIAG.STATEMENT_DURATION diagnostic table function

You can use the SYSCS_DIAG.STATEMENT_DURATION diagnostic table function to
analyze the execution duration of the useful SQL statements in the derby.log file or a
log file that you specify.

Java DB Reference Manual

144

You can also use this diagnostic table function to get an indication of where the
bottlenecks are in the JDBC code for an application.

To access the SYSCS_DIAG.STATEMENT_DURATION diagnostic table function, you
must use the SQL table function syntax.

For example:

SELECT *
 FROM TABLE (SYSCS_DIAG.STATEMENT_DURATION())
 AS T1

where T1 is a user-specified table name that is any valid identifier.

Restriction: For each transaction ID, a row is not returned for the last statement with
that transaction id. Transaction IDs change within a connection after a commit or rollback,
if the transaction that just ended modified data.

You can specify a log file name as an optional argument to the
SYSCS_DIAG.STATEMENT_DURATION diagnostic table function. When you specify
a log file name, the file name must be an expression whose data type maps to a Java
string.

For example:

SELECT *
 FROM TABLE (SYSCS_DIAG.STATEMENT_DURATION('somederby.log'))
 AS T1

Tip: By default Derby log files contain only boot, shutdown, and error messages.
In the Tuning Java DB guide, see the derby.stream.error.logSeverityLevel property
and the derby.language.logStatementText property for instructions on how to print
more information to Derby log files. You can then query that information by using the
SYSCS_DIAG.STATEMENT_DURATION diagnostic table function.

SYSCS_DIAG.TRANSACTION_TABLE diagnostic table

The SYSCS_DIAG.TRANSACTION_TABLE diagnostic table shows all of
the transactions that are currently in the database. You can reference the
SYSCS_DIAG.TRANSACTION_TABLE diagnostic table directly in a statement.

For example:

SELECT * FROM SYSCS_DIAG.TRANSACTION_TABLE

When the SYSCS_DIAG.TRANSACTION_TABLE diagnostic table is referenced in
a statement, a snap shot of the transaction table is taken. A snap shot is used so
that referencing the diagnostic table does not alter the normal timing and flow of the
application. It is possible that some transactions will be in a transition state when the
snap shot is taken.

Data types
This section describes the data types used in Derby.

Built-In type overview

The SQL type system is used by the language compiler to determine the compile-time
type of an expression and by the language execution system to determine the runtime
type of an expression, which can be a subtype or implementation of the compile-time
type.

Java DB Reference Manual

145

Each type has associated with it values of that type. In addition, values in the database or
resulting from expressions can be NULL, which means the value is missing or unknown.
Although there are some places where the keyword NULL can be explicitly used, it is not
in itself a value, because it needs to have a type associated with it.

The syntax presented in this section is the syntax you use when specifying a column's
data type in a CREATE TABLE statement.

Numeric types

Numeric types used in Derby.

Numeric type overview
Numeric types include the following types, which provide storage of varying sizes:

• Integer numerics
• SMALLINT (2 bytes)
• INTEGER (4 bytes)
• BIGINT (8 bytes)

• Approximate or floating-point numerics
• REAL (4 bytes)
• DOUBLE PRECISION (8 bytes)
• FLOAT (an alias for DOUBLE PRECISION or REAL)

• Exact numeric
• DECIMAL (storage based on precision)
• NUMERIC (an alias for DECIMAL)

Numeric type promotion in expressions

In expressions that use only integer types, Derby promotes the type of the result to at
least INTEGER. In expressions that mix integer with non-integer types, Derby promotes
the result of the expression to the highest type in the expression. Type Promotion in
Expressions shows the promotion of data types in expressions.
Table 10. Type Promotion in Expressions

Largest Type That Appears in Expression Resulting Type of Expression

DOUBLE PRECISION DOUBLE PRECISION

REAL DOUBLE PRECISION

DECIMAL DECIMAL

BIGINT BIGINT

INTEGER INTEGER

SMALLINT INTEGER

For example:

-- returns a double precision
VALUES 1 + 1.0e0
-- returns a decimal
VALUES 1 + 1.0
-- returns an integer
VALUES CAST (1 AS INT) + CAST (1 AS INT)

Storing values of one numeric data type in columns of another numeric data type

An attempt to put a floating-point type of a larger storage size into a location of a smaller
size fails only if the value cannot be stored in the smaller-size location. For example:

create table mytable (r REAL, d DOUBLE PRECISION);

Java DB Reference Manual

146

0 rows inserted/updated/deleted
INSERT INTO mytable (r, d) values (3.4028236E38, 3.4028235E38);
ERROR X0X41: The number '3.4028236E38' is outside the range for
the data type REAL.

You can store a floating point type in an INTEGER column; the fractional part of the
number is truncated. For example:

INSERT INTO mytable(integer_column) values (1.09e0);
1 row inserted/updated/deleted
SELECT integer_column
FROM mytable;
I

1

Integer types can always be placed successfully in approximate numeric values, although
with the possible loss of some precision.

Integers can be stored in decimals if the DECIMAL precision is large enough for the
value. For example:

ij> insert into mytable (decimal_column)
VALUES (55555555556666666666);
ERROR X0Y21: The number '55555555556666666666' is outside the
range of the target DECIMAL/NUMERIC(5,2) datatype.

An attempt to put an integer value of a larger storage size into a location of a smaller size
fails if the value cannot be stored in the smaller-size location. For example:

INSERT INTO mytable (int_column) values 2147483648;
ERROR 22003: The resulting value is outside the range for the
data type INTEGER.

Note: When truncating trailing digits from a NUMERIC value, Derby rounds down.
Scale for decimal arithmetic

SQL statements can involve arithmetic expressions that use decimal data types of
different precisions (the total number of digits, both to the left and to the right of the
decimal point) and scales (the number of digits of the fractional component). The
precision and scale of the resulting decimal type depend on the precision and scale of the
operands.

Given an arithmetic expression that involves two decimal operands:
• lp stands for the precision of the left operand
• rp stands for the precision of the right operand
• ls stands for the scale of the left operand
• rs stands for the scale of the right operand

Use the following formulas to determine the scale of the resulting data type for the
following kinds of arithmetical expressions:

• multiplication

ls + rs
• division

31 - lp + ls - rs
• AVG()

max(max(ls, rs), 4)
• all others

max(ls, rs)

For example, the scale of the resulting data type of the following expression is 27:

Java DB Reference Manual

147

11.0/1111.33
// 31 - 3 + 1 - 2 = 27

Use the following formulas to determine the precision of the resulting data type for the
following kinds of arithmetical expressions:

• multiplication

lp + rp
• addition

2 * (p - s) + s
• division

lp - ls + rp + max(ls + rp - rs + 1, 4)
• all others

max(lp - ls, rp - rs) + 1 + max(ls, rs)

Data type assignments and comparison, sorting, and ordering

Table 11. Assignments allowed by Derby
This table displays valid assignments between data types in Derby. A "Y" indicates that
the assignment is valid.

Types S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I
M
A
L

R
E
A
L

D
O
U
B
L
E

F
L
O
A
T

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G

V
A
R
C
H
A
R

C
H
A
R

F
O
R

B
I
T

D
A
T
A

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

L
O
N
G

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

C
L
O
B

B
L
O
B

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

X
M
L

SMALL INT Y Y Y Y Y Y Y - - - - - - - - - - - -

INTEGER Y Y Y Y Y Y Y - - - - - - - - - - - -

BIGINT Y Y Y Y Y Y Y - - - - - - - - - - - -

DECIMAL Y Y Y Y Y Y Y - - - - - - - - - - - -

REAL Y Y Y Y Y Y Y - - - - - - - - - - - -

Java DB Reference Manual

148

Types S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I
M
A
L

R
E
A
L

D
O
U
B
L
E

F
L
O
A
T

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G

V
A
R
C
H
A
R

C
H
A
R

F
O
R

B
I
T

D
A
T
A

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

L
O
N
G

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

C
L
O
B

B
L
O
B

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

X
M
L

DOUBLE Y Y Y Y Y Y Y - - - - - - - - - - - -

FLOAT Y Y Y Y Y Y Y - - - - - - - - - - - -

CHAR - - - - - - - Y Y Y - - - Y - Y Y Y -

VARCHAR - - - - - - - Y Y Y - - - Y - Y Y Y -

LONG
VARCHAR

- - - - - - - Y Y Y - - - Y - - - - -

CHAR FOR
BIT DATA

- - - - - - - - - - Y Y Y - - - - - -

VARCHAR
FOR BIT
DATA

- - - - - - - - - - Y Y Y - - - - - -

LONG
VARCHAR
FOR BIT
DATA

- - - - - - - - - - Y Y Y - - - - - -

CLOB - - - - - - - Y Y Y - - - Y - - - - -

BLOB - - - - - - - - - - - - - - Y - - - -

DATE - - - - - - - Y Y - - - - - - Y - - -

TIME - - - - - - - Y Y - - - - - - - Y - -

TIME STAMP - - - - - - - Y Y - - - - - - - - Y -

XML - - - - - - - - - - - - - - - - - - Y

Table 12. Comparisons allowed by Derby

Java DB Reference Manual

149

This table displays valid comparisons between data types in Derby. A "Y" indicates that
the comparison is allowed.

Types S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I
M
A
L

R
E
A
L

D
O
U
B
L
E

F
L
O
A
T

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G

V
A
R
C
H
A
R

C
H
A
R

F
O
R

B
I
T

D
A
T
A

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

L
O
N
G

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

C
L
O
B

B
L
O
B

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

X
M
L

SMALL INT Y Y Y Y Y Y Y - - - - - - - - - - - -

INTEGER Y Y Y Y Y Y Y - - - - - - - - - - - -

BIGINT Y Y Y Y Y Y Y - - - - - - - - - - - -

DECIMAL Y Y Y Y Y Y Y - - - - - - - - - - - -

REAL Y Y Y Y Y Y Y - - - - - - - - - - - -

DOUBLE Y Y Y Y Y Y Y - - - - - - - - - - - -

FLOAT Y Y Y Y Y Y Y - - - - - - - - - - - -

CHAR - - - - - - - Y Y - - - - - - Y Y Y -

VARCHAR - - - - - - - Y Y - - - - - - Y Y Y -

LONG
VARCHAR

- - - - - - - - - - - - - - - - - - -

CHAR FOR
BIT DATA

- - - - - - - - - - Y Y - - - - - - -

VARCHAR
FOR BIT
DATA

- - - - - - - - - - Y Y - - - - - - -

LONG
VARCHAR
FOR BIT
DATA

- - - - - - - - - - - - - - - - - - -

Java DB Reference Manual

150

Types S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I
M
A
L

R
E
A
L

D
O
U
B
L
E

F
L
O
A
T

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G

V
A
R
C
H
A
R

C
H
A
R

F
O
R

B
I
T

D
A
T
A

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

L
O
N
G

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

C
L
O
B

B
L
O
B

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

X
M
L

CLOB - - - - - - - - - - - - - - - - - - -

BLOB - - - - - - - - - - - - - - - - - - -

DATE - - - - - - - Y Y - - - - - - Y - - -

TIME - - - - - - - Y Y - - - - - - - Y - -

TIME STAMP - - - - - - - Y Y - - - - - - - - Y -

XML - - - - - - - - - - - - - - - - - - -

BIGINT data type

BIGINT provides 8 bytes of storage for integer values.

Syntax

BIGINT

Corresponding compile-time Java type

java.lang.Long

JDBC metadata type (java.sql.Types)

BIGINT

Minimum value

-9223372036854775808 (java.lang.Long.MIN_VALUE)

Maximum value

9223372036854775807 (java.lang.Long.MAX_VALUE)

Java DB Reference Manual

151

When mixed with other data types in expressions, the resulting data type follows the rules
shown in Numeric type promotion in expressions.

An attempt to put an integer value of a larger storage size into a location of a smaller size
fails if the value cannot be stored in the smaller-size location. Integer types can always
successfully be placed in approximate numeric values, although with the possible loss of
some precision. BIGINTs can be stored in DECIMALs if the DECIMAL precision is large
enough for the value.

9223372036854775807

BLOB data type

A BLOB (binary large object) is a varying-length binary string that can be up to
2,147,483,647 characters long. Like other binary types, BLOB strings are not associated
with a code page. In addition, BLOB strings do not hold character data.

The length is given in bytes for BLOB unless one of the suffixes K, M, or G is given,
relating to the multiples of 1024, 1024*1024, 1024*1024*1024 respectively.

Note: Length is specified in bytes for BLOB.

Syntax

{ BLOB | BINARY LARGE OBJECT } [(length [{K |M |G }])]

Default

A BLOB without a specified length is defaulted to two gigabytes (2,147,483,647).

Corresponding compile-time Java type

java.sql.Blob

JDBC metadata type (java.sql.Types)

BLOB

Use the getBlob method on the java.sql.ResultSet to retrieve a BLOB handle to the
underlying data.

Related information

see Mapping of java.sql.Blob and java.sql.Clob interfaces

create table pictures(name varchar(32) not null primary key, pic
 blob(16M));

--find all logotype pictures
select length(pic), name from pictures where name like '%logo%';

--find all image doubles (blob comparsions)
select a.name as double_one, b.name as double_two
from pictures as a, pictures as b
where a.name < b.name
and a.pic = b.pic
order by 1,2;

CHAR data type

CHAR provides for fixed-length storage of strings.

Syntax

Java DB Reference Manual

152

CHAR[ACTER] [(length)]

length is an unsigned integer constant. The default length for a CHAR is 1.

Corresponding compile-time Java type

java.lang.String

JDBC metadata type (java.sql.Types)

CHAR

Derby inserts spaces to pad a string value shorter than the expected length. Derby
truncates spaces from a string value longer than the expected length. Characters other
than spaces cause an exception to be raised. When comparison boolean operators are
applied to CHARs, the shorter string is padded with spaces to the length of the longer
string.

When CHARs and VARCHARs are mixed in expressions, the shorter value is padded
with spaces to the length of the longer value.

The type of a string constant is CHAR.

Implementation-defined aspects

The only limit on the length of CHAR data types is the value
java.lang.Integer.MAX_VALUE.

-- within a string constant use two single quotation marks
-- to represent a single quotation mark or apostrophe
VALUES 'hello this is Joe''s string'

CHAR FOR BIT DATA data type

A CHAR FOR BIT DATA type allows you to store byte strings of a specified length. It is
useful for unstructured data where character strings are not appropriate.

Syntax

{ CHAR | CHARACTER }[(length)] FOR BIT DATA

length is an unsigned integer literal designating the length in bytes.

The default length for a CHAR FOR BIT DATA type is 1., and the maximum size of length
is 254 bytes.

JDBC metadata type (java.sql.Types)

BINARY

CHAR FOR BIT DATA stores fixed-length byte strings. If a CHAR FOR BIT DATA value
is smaller than the target CHAR FOR BIT DATA, it is padded with a 0x20 byte value.

Comparisons of CHAR FOR BIT DATA and VARCHAR FOR BIT DATA values are
precise. For two bit strings to be equal, they must be exactly the same length. (This
differs from the way some other DBMSs handle BINARY values but works as specified in
SQL-92.)

An operation on a VARCHAR FOR BIT DATA and a CHAR FOR BIT DATA value (e.g., a
concatenation) yields a VARCHAR FOR BIT DATA value.

CREATE TABLE t (b CHAR(2) FOR BIT DATA);
INSERT INTO t VALUES (X'DE');
SELECT *
FROM t;
-- yields the following output
B

Java DB Reference Manual

153

de20

CLOB data type

A CLOB (character large object) value can be up to 2,147,483,647 characters long. A
CLOB is used to store unicode character-based data, such as large documents in any
character set.

The length is given in number characters for both CLOB, unless one of the suffixes K, M,
or G is given, relating to the multiples of 1024, 1024*1024, 1024*1024*1024 respectively.

Length is specified in characters (unicode) for CLOB.

Syntax

{CLOB |CHARACTER LARGE OBJECT} [(length [{K |M |G}])]

Default

A CLOB without a specified length is defaulted to two gigabytes (2,147,483,647).

Corresponding Compile-Time Java Type

java.sql.Clob

JDBC Metadata Type (java.sql.Types)

CLOB

Use the getClob method on the java.sql.ResultSet to retrieve a CLOB handle to the
underlying data.

Related Information

See Mapping of java.sql.Blob and java.sql.Clob interfaces.

import java.sql.*;

public class clob
{
 public static void main(String[] args) {
 try {
 String url = "jdbc:derby:clobberyclob;create=true";

 Class.forName("org.apache.derby.jdbc.EmbeddedDriver").newInstance();
 Connection conn = DriverManager.getConnection(url);

 Statement s = conn.createStatement();
 s.executeUpdate("CREATE TABLE documents (id INT, text CLOB(64
 K))");
 conn.commit();

 // --- add a file
 java.io.File file = new java.io.File("asciifile.txt");
 int fileLength = (int) file.length();

 // - first, create an input stream
 java.io.InputStream fin = new java.io.FileInputStream(file);
 PreparedStatement ps = conn.prepareStatement("INSERT
 INTO documents VALUES (?, ?)");
 ps.setInt(1, 1477);

 // - set the value of the input parameter to the input stream
 ps.setAsciiStream(2, fin, fileLength);
 ps.execute();
 conn.commit();

Java DB Reference Manual

154

 // --- reading the columns
 ResultSet rs = s.executeQuery("SELECT text FROM documents
 WHERE id = 1477");
 while (rs.next()) {
 java.sql.Clob aclob = rs.getClob(1);
 java.io.InputStream ip = rs.getAsciiStream(1);
 int c = ip.read();
 while (c > 0) {
 System.out.print((char)c);
 c = ip.read();
 }
 System.out.print("\n");
 // ...
 }
 } catch (Exception e) {
 System.out.println("Error! "+e);
 }
 }
}

DATE data type

DATE provides for storage of a year-month-day in the range supported by java.sql.Date.

Syntax

DATE

Corresponding compile-time Java type

java.sql.Date

JDBC metadata type (java.sql.Types)

DATE

Dates, times, and timestamps must not be mixed with one another in expressions.

Any value that is recognized by the java.sql.Date method is permitted in a column of the
corresponding SQL date/time data type. Derby supports the following formats for DATE:

yyyy-mm-dd
mm/dd/yyyy
dd.mm.yyyy

The first of the three formats above is the java.sql.Date format.

The year must always be expressed with four digits, while months and days may have
either one or two digits.

Derby also accepts strings in the locale specific datetime format, using the locale of the
database server. If there is an ambiguity, the built-in formats above take precedence.

Examples

VALUES DATE('1994-02-23')

VALUES '1993-09-01'

DECIMAL data type

DECIMAL provides an exact numeric in which the precision and scale can be arbitrarily
sized. You can specify the precision (the total number of digits, both to the left and
the right of the decimal point) and the scale (the number of digits of the fractional
component). The amount of storage required is based on the precision.

Java DB Reference Manual

155

Syntax

{ DECIMAL | DEC } [(precision [, scale])]

The precision must be between 1 and 31. The scale must be less than or equal to the
precision.

If the scale is not specified, the default scale is 0. If the precision is not specified, the
default precision is 5.

An attempt to put a numeric value into a DECIMAL is allowed as long as any
non-fractional precision is not lost. When truncating trailing digits from a DECIMAL value,
Derby rounds down.

For example:

-- this cast loses only fractional precision
values cast (1.798765 AS decimal(5,2));
1

1.79
-- this cast does not fit
values cast (1798765 AS decimal(5,2));
1

ERROR 22003: The resulting value is outside the range
for the data type DECIMAL/NUMERIC(5,2).

When mixed with other data types in expressions, the resulting data type follows the rules
shown in Numeric type promotion in expressions.

See also Storing values of one numeric data type in columns of another numeric data
type.

When two decimal values are mixed in an expression, the scale and precision of the
resulting value follow the rules shown in Scale for decimal arithmetic.

Corresponding compile-time Java type

java.math.BigDecimal

JDBC metadata type (java.sql.Types)

DECIMAL

VALUES 123.456

VALUES 0.001

Integer constants too big for BIGINT are made DECIMAL constants.

DOUBLE data type

The DOUBLE data type is a synonym for the DOUBLE PRECISION data type.

Syntax

DOUBLE

DOUBLE PRECISION data type

The DOUBLE PRECISION data type provides 8-byte storage for numbers using IEEE
floating-point notation.

Syntax

Java DB Reference Manual

156

DOUBLE PRECISION

or, alternately

DOUBLE

DOUBLE can be used synonymously with DOUBLE PRECISION.

Limitations

DOUBLE value ranges:

• Smallest DOUBLE value: -1.79769E+308
• Largest DOUBLE value: 1.79769E+308
• Smallest positive DOUBLE value: 2.225E-307
• Largest negative DOUBLE value: -2.225E-307

These limits are different from the java.lang.DoubleJava type limits.

An exception is thrown when any double value is calculated or entered that is outside of
these value ranges. Arithmetic operations do not round their resulting values to zero. If
the values are too small, you will receive an exception.

Numeric floating point constants are limited to a length of 30 characters.

-- this example will fail because the constant is too long:
values 01234567890123456789012345678901e0;

Corresponding compile-time Java type

java.lang.Double

JDBC metadata type (java.sql.Types)

DOUBLE

When mixed with other data types in expressions, the resulting data type follows the rules
shown in Numeric type promotion in expressions.

See also Storing values of one numeric data type in columns of another numeric data
type.

Examples

3421E+09
425.43E9
9E-10
4356267544.32333E+30

FLOAT data type

The FLOAT data type is an alias for a REAL or DOUBLE PRECISION data type,
depending on the precision you specify.

Syntax

FLOAT [(precision)]

The default precision for FLOAT is 53 and is equivalent to DOUBLE PRECISION. A
precision of 23 or less makes FLOAT equivalent to REAL. A precision of 24 or greater
makes FLOAT equivalent to DOUBLE PRECISION. If you specify a precision of 0, you
get an error. If you specify a negative precision, you get a syntax error.

JDBC metadata type (java.sql.Types)

REAL or DOUBLE

Java DB Reference Manual

157

Limitations

If you are using a precision of 24 or greater, the limits of FLOAT are similar to the limits of
DOUBLE.

If you are using a precision of 23 or less, the limits of FLOAT are similar to the limits of
REAL.

INTEGER data type

INTEGER provides 4 bytes of storage for integer values.

Syntax

{ INTEGER | INT }

Corresponding Compile-Time Java Type

java.lang.Integer

JDBC Metadata Type (java.sql.Types)

INTEGER

Minimum Value

-2147483648 (java.lang.Integer.MIN_VALUE)

Maximum Value

2147483647 (java.lang.Integer.MAX_VALUE)

When mixed with other data types in expressions, the resulting data type follows the rules
shown in Numeric type promotion in expressions.

See also Storing values of one numeric data type in columns of another numeric data
type.

3453
425

LONG VARCHAR data type

The LONG VARCHAR type allows storage of character strings with a maximum length of
32,700 characters. It is identical to VARCHAR, except that you do not have to specify a
maximum length when creating columns of this type.

Syntax

LONG VARCHAR

Corresponding compile-time Java type

java.lang.String

JDBC metadata type (java.sql.Types)

LONGVARCHAR

When you are converting from Java values to SQL values, no Java type corresponds to
LONG VARCHAR.

LONG VARCHAR FOR BIT DATA data type

Java DB Reference Manual

158

The LONG VARCHAR FOR BIT DATA type allows storage of bit strings up to 32,700
bytes. It is identical to VARCHAR FOR BIT DATA, except that you do not have to specify
a maximum length when creating columns of this type.

Syntax

LONG VARCHAR FOR BIT DATA

JDBC metadata type (java.sql.Types)

LONGVARBINARY

NUMERIC data type

NUMERIC is a synonym for DECIMAL and behaves the same way. See DECIMAL data
type.

Syntax

NUMERIC [(precision [, scale])]

Corresponding compile-time Java type

java.math.BigDecimal

JDBC metadata Ttype (java.sql.Types)

NUMERIC

123.456
.001

REAL data type

The REAL data type provides 4 bytes of storage for numbers using IEEE floating-point
notation.

Syntax

REAL

Corresponding compile-time Java type

java.lang.Float

JDBC metadata type (java.sql.Types)

REAL

Limitations

REAL value ranges:

• Smallest REAL value: -3.402E+38
• Largest REAL value: 3.402E+38
• Smallest positive REAL value: 1.175E-37
• Largest negative REAL value: -1.175E-37

These limits are different from the java.lang.Float Java type limits.

An exception is thrown when any double value is calculated or entered that is outside of
these value ranges. Arithmetic operations do not round their resulting values to zero. If
the values are too small, you will receive an exception. The arithmetic operations take
place with double arithmetic in order to detect under flows.

Numeric floating point constants are limited to a length of 30 characters.

Java DB Reference Manual

159

-- this example will fail because the constant is too long:
values 01234567890123456789012345678901e0;

When mixed with other data types in expressions, the resulting data type follows the rules
shown in Numeric type promotion in expressions.

See also Storing values of one numeric data type in columns of another numeric data
type.

Constants always map to DOUBLE PRECISION; use a CAST to convert a constant to a
REAL.

SMALLINT data type

SMALLINT provides 2 bytes of storage.

Syntax

SMALLINT

Corresponding compile-time Java type

java.lang.Short

JDBC metadata type (java.sql.Types)

SMALLINT

Minimum value

-32768 (java.lang.Short.MIN_VALUE)

Maximum value

32767 (java.lang.Short.MAX_VALUE)

When mixed with other data types in expressions, the resulting data type follows the rules
shown in Numeric type promotion in expressions.

See also Storing values of one numeric data type in columns of another numeric data
type.

Constants in the appropriate format always map to INTEGER or BIGINT, depending on
their length.

TIME data type

TIME provides for storage of a time-of-day value.

Syntax

TIME

Corresponding compile-time Java type

java.sql.Time

JDBC metadata type (java.sql.Types)

TIME

Dates, times, and timestamps cannot be mixed with one another in expressions except
with a CAST.

Any value that is recognized by the java.sql.Time method is permitted in a column of the
corresponding SQL date/time data type. Derby supports the following formats for TIME:

Java DB Reference Manual

160

hh:mm[:ss]
hh.mm[.ss]
hh[:mm] {AM | PM}

The first of the three formats above is the java.sql.Time format.

Hours may have one or two digits. Minutes and seconds, if present, must have two digits.

Derby also accepts strings in the locale specific datetime format, using the locale of the
database server. If there is an ambiguity, the built-in formats above take precedence.

Examples

VALUES TIME('15:09:02')
VALUES '15:09:02'

TIMESTAMP data type

TIMESTAMP stores a combined DATE and TIME value to be stored. It permits a
fractional-seconds value of up to nine digits.

Syntax

TIMESTAMP

Corresponding compile-time Java type

java.sql.Timestamp

JDBC metadata type (java.sql.Types)

TIMESTAMP

Dates, times, and timestamps cannot be mixed with one another in expressions.

Derby supports the following formats for TIMESTAMP:

yyyy-mm-dd hh:mm:ss[.nnnnnn]
yyyy-mm-dd-hh.mm.ss[.nnnnnn]

The first of the two formats above is the java.sql.Timestamp format.

The year must always have four digits. Months, days, and hours may have one or two
digits. Minutes and seconds must have two digits. Nanoseconds, if present, may have
between one and six digits.

Derby also accepts strings in the locale specific datetime format, using the locale of the
database server. If there is an ambiguity, the built-in formats above take precedence.

Examples

VALUES '1960-01-01 23:03:20'
VALUES TIMESTAMP('1962-09-23 03:23:34.234')
VALUES TIMESTAMP('1960-01-01 23:03:20')

VARCHAR data type

VARCHAR provides for variable-length storage of strings.

Syntax

{ VARCHAR | CHAR VARYING | CHARACTER VARYING }(length)

length is an unsigned integer constant, and it must not be greater than the constraint of
the integer used to specify the length, the value java.lang.Integer.MAX_VALUE.

Java DB Reference Manual

161

The maximum length for a VARCHAR string is 32,672 characters.

Corresponding compile-time Java type

java.lang.String

JDBC metadata type (java.sql.Types)

VARCHAR

Derby does not pad a VARCHAR value whose length is less than specified. Derby
truncates spaces from a string value when a length greater than the VARCHAR expected
is provided. Characters other than spaces are not truncated, and instead cause an
exception to be raised. When comparison boolean operators are applied to VARCHARs,
the lengths of the operands are not altered, and spaces at the end of the values are
ignored.

When CHARs and VARCHARs are mixed in expressions, the shorter value is padded
with spaces to the length of the longer value.

The type of a string constant is CHAR, not VARCHAR.

VARCHAR FOR BIT DATA data type

The VARCHAR FOR BIT DATA type allows you to store binary strings less than or equal
to a specified length. It is useful for unstructured data where character strings are not
appropriate (e.g., images).

Syntax

{ VARCHAR | CHAR VARYING | CHARACTER VARYING } (length) FOR BIT DATA

length is an unsigned integer literal designating the length in bytes.

Unlike the case for the CHAR FOR BIT DATA type, there is no default length for a
VARCHAR FOR BIT DATA type. The maximum size of the length value is 32,672 bytes.

JDBC metadata type (java.sql.Types)

VARBINARY

VARCHAR FOR BIT DATA stores variable-length byte strings. Unlike CHAR FOR BIT
DATA values, VARCHAR FOR BIT DATA values are not padded out to the target length.

An operation on a VARCHAR FOR BIT DATA and a CHAR FOR BIT DATA value (e.g., a
concatenation) yields a VARCHAR FOR BIT DATA value.

The type of a byte literal is always a VARCHAR FOR BIT DATA, not a CHAR FOR BIT
DATA.

XML data type

The XML data type is used for Extensible Markup Language (XML) documents.

The XML data type is used:
• To store XML documents that conform to the SQL/XML definition of a well-formed

XML(DOCUMENT(ANY)) value.
• Transiently for XML(SEQUENCE) values, that might not be well-formed

XML(DOCUMENT(ANY)) values.

Note: For an application to retrieve, update, query, or otherwise access an XML
data value, the application must have classes for a JAXP parser and for Xalan in the
classpath. Derby issues an error if either the parser or Xalan is not found.

Java DB Reference Manual

162

Because none of the JDBC-side support for SQL/XML is implemented in Derby, it is not
possible to bind directly into an XML value or to retrieve an XML value directly from a
result set using JDBC. Instead, you must bind and retrieve the XML data as Java strings
or character streams by explicitly specifying the appropriate XML operators, XMLPARSE
and XMLSERIALIZE, as part of your SQL queries.

Syntax

XML

Corresponding compile-time Java type

None

The Java type for XML values is java.sql.SQLXML. However, the java.sql.SQLXML type
is not supported by Derby.

JDBC metadata type (java.sql.Types)

None

The metadata type for XML values is SQLXML. However, the SQLXML type is not
supported by Derby.

To retrieve XML values from a Derby database using JDBC, use the XMLSERIALIZE
operator in the SQL query. For example:

SELECT XMLSERIALIZE (xcol as CLOB) FROM myXmlTable

Then retrieve the XML value by using the getXXX method that corresponds to the target
serialization type, in this example CLOB data types.

To store an XML value into a Derby database using JDBC, use the XMLPARSE operator
in the SQL statement. For example:

INSERT INTO myXmlTable(xcol) VALUES XMLPARSE(
 DOCUMENT CAST (? AS CLOB) PRESERVE WHITESPACE)

Then use any of the setXXX methods that are compatible with String
types, in this example use the PreparedStatement.setString or
PreparedStatement.setCharacterStream method calls to bind the operator.

Java DB Reference Manual

163

SQL reserved words

This section lists all the Derby reserved words, including those in the SQL-92 standard.
Derby will return an error if you use any of these keywords as an identifier name unless
you surround the identifier name with quotes ("). See Rules for SQL92 identifiers.

ADD
ALL
ALLOCATE
ALTER
AND
ANY
ARE
AS
ASC
ASSERTION
AT
AUTHORIZATION
AVG
BEGIN
BETWEEN
BIGINT
BIT
BOOLEAN
BOTH
BY
CALL
CASCADE
CASCADED
CASE
CAST
CHAR
CHARACTER
CHECK
CLOSE
COALESCE
COLLATE
COLLATION
COLUMN
COMMIT
CONNECT
CONNECTION
CONSTRAINT
CONSTRAINTS
CONTINUE
CONVERT
CORRESPONDING
CREATE
CURRENT
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_USER
CURSOR

Java DB Reference Manual

164

DEALLOCATE
DEC
DECIMAL
DECLARE
DEFAULT
DEFERRABLE
DEFERRED
DELETE
DESC
DESCRIBE
DIAGNOSTICS
DISCONNECT
DISTINCT
DOUBLE
DROP
ELSE
END
END-EXEC
ESCAPE
EXCEPT
EXCEPTION
EXEC
EXECUTE
EXISTS
EXPLAIN
EXTERNAL
FALSE
FETCH
FIRST
FLOAT
FOR
FOREIGN
FOUND
FROM
FULL
FUNCTION
GET
GETCURRENTCONNECTION
GLOBAL
GO
GOTO
GRANT
GROUP
HAVING
HOUR
IDENTITY
IMMEDIATE
IN
INDICATOR
INITIALLY
INNER
INOUT
INPUT
INSENSITIVE
INSERT
INT

Java DB Reference Manual

165

INTEGER
INTERSECT
INTO
IS
ISOLATION
JOIN
KEY
LAST
LEFT
LIKE
LOWER
LTRIM
MATCH
MAX
MIN
MINUTE
NATIONAL
NATURAL
NCHAR
NVARCHAR
NEXT
NO
NOT
NULL
NULLIF
NUMERIC
OF
ON
ONLY
OPEN
OPTION
OR
ORDER
OUTER
OUTPUT
OVERLAPS
PAD
PARTIAL
PREPARE
PRESERVE
PRIMARY
PRIOR
PRIVILEGES
PROCEDURE
PUBLIC
READ
REAL
REFERENCES
RELATIVE
RESTRICT
REVOKE
RIGHT
ROLLBACK
ROWS
RTRIM
SCHEMA

Java DB Reference Manual

166

SCROLL
SECOND
SELECT
SESSION_USER
SET
SMALLINT
SOME
SPACE
SQL
SQLCODE
SQLERROR
SQLSTATE
SUBSTR
SUBSTRING
SUM
SYSTEM_USER
TABLE
TEMPORARY
TIMEZONE_HOUR
TIMEZONE_MINUTE
TO
TRANSACTION
TRANSLATE
TRANSLATION
TRIM
TRUE
UNION
UNIQUE
UNKNOWN
UPDATE
UPPER
USER
USING
VALUES
VARCHAR
VARYING
VIEW
WHENEVER
WHERE
WITH
WORK
WRITE
XML
XMLEXISTS
XMLPARSE
XMLQUERY
XMLSERIALIZE
YEAR

Java DB Reference Manual

167

Derby support for SQL-92 features

There are four levels of SQL-92 support:
• SQL92E

Entry
• SQL92T

Transitional, a level defined by NIST in a publication called FIPS 127-2
• SQL92I

Intermediate
• SQL92F

Full

Basic data types
The following table shows Derby support for the SQL-92 basic data types.
Table 13. Support for SQL-92 Features: Basic data types

Feature Source Derby

SMALLINT SQL92E Yes

INTEGER SQL92E Yes

DECIMAL(p,s) SQL92E Yes

NUMERIC(p,s) SQL92E Yes

REAL SQL92E Yes

FLOAT(p) SQL92E Yes

DOUBLE PRECISION SQL92E Yes

CHAR(n) SQL92E Yes

Basic math operations
Table 14. Support for SQL-92 Features: Basic math operations

Feature Source Derby

+, *, -, /, unary +, unary - SQL92E Yes

Basic comparisons
Table 15. Support for SQL-92 Features: Basic comparisons

Feature Source Derby

<, >, <= ,>=, <>, = SQL92E Yes

Basic predicates
Table 16. Support for SQL-92 Features: Basic predicates

Feature Source Derby

BETWEEN, LIKE, NULL SQL92E Yes

Java DB Reference Manual

168

Quantified predicates
Table 17. Support for SQL-92 Features: Quantified predicates

Feature Source Derby

IN, ALL/SOME, EXISTS SQL92E Yes

Schema definition
Table 18. Support for SQL-92 Features: schema definition

Feature Source Derby

Tables SQL92E Yes

Views SQL92E Yes

Privileges SQL92E Yes

Column attributes
Table 19. Support for SQL-92 Features: column attributes

Feature Source Derby

Default values SQL92E Yes

Nullability SQL92E Yes

Constraints (non-deferrable)
Table 20. Support for SQL-92 Features: constraints (non-deferrable)

Feature Source Derby

NOT NULL SQL92E Yes (not stored in
SYSCONSTRAINTS)

UNIQUE/PRIMARY KEY SQL92E Yes

FOREIGN KEY SQL92E Yes

CHECK SQL92E Yes

View WITH CHECK
OPTION

SQL92E No, views cannot be
updated

Cursors
Table 21. Support for SQL-92 Features: Cursors

Feature Source Derby

DECLARE, OPEN, FETCH,
CLOSE

SQL92E Yes, by using JDBC
method calls

UPDATE, DELETE
CURRENT

SQL92E Yes

Dynamic SQL 1
Table 22. Support for SQL-92 Features: Dynamic SQL 1

Java DB Reference Manual

169

Feature Source Derby

ALLOCATE /
DEALLOCATE / GET / SET
DESCRIPTOR

SQL92T Yes, by using JDBC
method calls

PREPARE / EXECUTE /
EXECUTE IMMEDIATE

SQL92T Yes, by using JDBC
method calls

DECLARE, OPEN,
FETCH, CLOSE, UPDATE,
DELETE dynamic cursor

SQL92T Yes, by using JDBC
method calls

DESCRIBE output SQL92T Yes, by using JDBC
method calls

Basic information schema
Table 23. Support for SQL-92 Features: Basic information schema

Feature Source Derby

TABLES SQL92T SYS.SYSTABLES,
SYS.SYSVIEWS,
SYS.SYSCOLUMNS

VIEWS SQL92T SYS.SYSTABLES,
SYS.SYSVIEWS,
SYS.SYSCOLUMNS

COLUMNS SQL92T SYS.SYSTABLES,
SYS.SYSVIEWS,
SYS.SYSCOLUMNS

Basic schema manipulation
Table 24. Support for SQL-92 Features: Basic schema manipulation

Feature Source Derby

CREATE / DROP TABLE SQL92T Yes

CREATE / DROP VIEW SQL92T Yes

GRANT / REVOKE SQL92T Yes

ALTER TABLE ADD
COLUMN

SQL92T Yes

ALTER TABLE DROP
COLUMN

SQL92T Yes

Joined table
Table 25. Support for SQL-92 Features: Joined table

Feature Source Derby

INNER JOIN SQL92T Yes

natural join SQL92T No

LEFT, RIGHT OUTER
JOIN

SQL92T Yes

Java DB Reference Manual

170

Feature Source Derby

join condition SQL92T Yes

named columns join SQL92T Yes

Date and time data types
Table 26. Support for SQL-92 Features: Date and time data types

Feature Source Derby

simple DATE, TIME,
TIMESTAMP, INTERVAL

SQL92T Yes, not INTERVAL

datetime constants SQL92T Yes

datetime math SQL92T Yes, with Java methods

datetime comparisons SQL92T Yes

predicates: OVERLAPS SQL92T Yes, with Java methods

VARCHAR data type
Table 27. Support for SQL-92 Features: VARCHAR

Feature Source Derby

LENGTH SQL92T Yes

concatenation (||) SQL92T Yes

Transaction isolation
Table 28. Support for SQL-92 Features: Transaction isolation

Feature Source Derby

READ WRITE / READ
ONLY

SQL92T By using JDBC, database
properties, and storage
media

RU, RC, RR, SER SQL92T Yes

Multiple schemas per user
Table 29. Support for SQL-92 Features: Multiple schemas per user

Feature Source Derby

SCHEMATA view SQL92T SYS.SYSSCHEMAS

Privilege tables
Table 30. Support for SQL-92 Features: Privilege tables

Feature Source Derby

TABLE_PRIVILEGES SQL92T No

COLUMNS_PRIVILEGES SQL92T No

USAGE_PRIVILEGES SQL92T No

Java DB Reference Manual

171

Table operations
Table 31. Support for SQL-92 Features: Table operations

Feature Source Derby

UNION relaxations SQL92I Yes

EXCEPT SQL92I Yes

INTERSECT SQL92I Yes

CORRESPONDING SQL92I No

Schema definition statement
Table 32. Support for SQL-92 Features: Schema definition statement

Feature Source Derby

CREATE SCHEMA SQL92I Partial support

User authorization
Table 33. Support for SQL-92 Features: User authorization

Feature Source Derby

SET SESSION
AUTHORIZATION

SQL92I Use SET SCHEMA

CURRENT_USER SQL92I Yes

SESSION_USER SQL92I Yes

SYSTEM_USER SQL92I No

Constraint tables
Table 34. Support for SQL-92 Features: Constraint tables

Feature Source Derby

TABLE CONSTRAINTS SQL92I SYS.SYSCONSTRAINTS

REFERENTIAL
CONSTRAINTS

SQL92I SYS.SYSFOREIGNKEYS

CHECK CONSTRAINTS SQL92I SYS.SYSCHECKS

Documentation schema
Table 35. Support for SQL-92 Features: Documentation schema

Feature Source Derby

SQL_FEATURES SQL92I/FIPS 127-2 Use JDBC
DatabaseMetaData

SQL_SIZING SQL92I/FIPS 127-2 Use JDBC
DatabaseMetaData

Full DATETIME
Table 36. Support for SQL-92 Features: Full DATETIME

Java DB Reference Manual

172

Feature Source Derby

precision for TIME and
TIMESTAMP

SQL92F Yes

Full character functions
Table 37. Support for SQL-92 Features: Full character functions

Feature Source Derby

POSITION expression SQL92F Use Java methods or
LOCATE

UPPER/LOWER functions SQL92F Yes

Miscellaneous features
Table 38. Support for SQL-92 Features: Miscellaneous

Feature Source Derby

Delimited identifiers SQL92E Yes

Correlated subqueries SQL92E Yes

Insert, Update, Delete
statements

SQL92E Yes

Joins SQL92E Yes

Where qualifications SQL92E Yes

Group by SQL92E Yes

Having SQL92E Yes

Aggregate functions SQL92E Yes

Order by SQL92E Yes

Select expressions SQL92E Yes

Select * SQL92E Yes

SQLCODE SQL92E No, deprecated in SQL-92

SQLSTATE SQL92E Yes

UNION, INTERSECT, and
EXCEPT in views

SQL92T Yes

Implicit numeric casting SQL92T Yes

Implicit character casting SQL92T Yes

Get diagnostics SQL92T Use JDBC SQLExceptions

Grouped operations SQL92T Yes

Qualified * in select list SQL92T Yes

Lowercase identifiers SQL92T Yes

nullable PRIMARY KEYs SQL92T No

Multiple module support SQL92T No (not required and not
part of JDBC)

Java DB Reference Manual

173

Feature Source Derby

Referential delete actions SQL92T CASCADE, SET NULL,
RESTRICT, and NO
ACTION

CAST functions SQL92T Yes

INSERT expressions SQL92T Yes

Explicit defaults SQL92T Yes

Keyword relaxations SQL92T Yes

Domain definition SQL92I No

CASE expression SQL92I Partial support

Compound character string
constants

SQL92I Use concatenation

LIKE enhancements SQL92I Yes

UNIQUE predicate SQL92I No

Usage tables SQL92I SYS.SYSDEPENDS

Intermediate information
schema

SQL92I Use JDBC
DatabaseMetaData and
Derby system tables

Subprogram support SQL92I Not relevant to JDBC,
which is much richer

Intermediate SQL Flagging SQL92I No

Schema manipulation SQL92I Yes

Long identifiers SQL92I Yes

Full outer join SQL92I No

Time zone specification SQL92I No

Scrolled cursors SQL92I Partial support (scrollable
insensitive result sets
through JDBC 2.0)

Intermediate set function
support

SQL92I Partial support

Character set definition SQL92I Support for Java locales

Named character sets SQL92I Support for Java locales

Scalar subquery values SQL92I Yes

Expanded null predicate SQL92I Yes

Constraint management SQL92I Yes (ADD/DROP
CONSTRAINT)

FOR BIT DATA types SQL92F Yes

Assertion constraints SQL92F No

Temporary tables SQL92F Partial support, with
DECLARE GLOBAL
TEMPORARY TABLE

Java DB Reference Manual

174

Feature Source Derby

Full dynamic SQL SQL92F No

Full value expressions SQL92F Yes

Truth value tests SQL92F Yes

Derived tables in FROM SQL92F Yes

Trailing underscore SQL92F Yes

Indicator data types SQL92F Not relevant to JDBC

Referential name order SQL92F No

Full SQL Flagging SQL92F No

Row and table constructors SQL92F Yes

Catalog name qualifiers SQL92F No

Simple tables SQL92F No

Subqueries in CHECK SQL92F No, but can with Java
methods

Union join SQL92F No

Collation and translation SQL92F Java locales supported

Referential update actions SQL92F RESTRICT and NO
ACTION. Can do others
with triggers.

ALTER domain SQL92F nNo

INSERT column privileges SQL92F No

Referential MATCH types SQL92F No

View CHECK
enhancements

SQL92F No, views cannot be
updated

Session management SQL92F Use JDBC

Connection management SQL92F Use JDBC

Self-referencing operations SQL92F Yes

Insensitive cursors SQL92F Yes through JDBC 2.0

Full set function SQL92F Partial support

Catalog flagging SQL92F No

Local table references SQL92F No

Full cursor update SQL92F No

Java DB Reference Manual

175

Derby system tables

Derby includes system tables.

You can query system tables, but you cannot alter them.

All of the above system tables reside in the SYS schema. Because this is not the default
schema, qualify all queries accessing the system tables with the SYS schema name.

The recommended way to get more information about these tables is to use an instance
of the Java interface java.sql.DatabaseMetaData.

SYSALIASES system table
Describes the procedures and functions in the database.

Column
Name Type Length Nullability Contents

ALIASID CHAR 36 false unique identifier for the
alias

ALIAS VARCHAR 128 false alias

SCHEMAID CHAR 36 true reserved for future use

JAVACLASSNAMELONGVARCHAR 255 false the Java class name

ALIASTYPE CHAR 1 false 'F' (function)'P'
(procedure)

NAMESPACE CHAR 1 false 'F' (function)'P'
(procedure)

SYSTEMALIAS BOOLEAN ' false true (system supplied or
built-in alias)

false (alias created by a
user)

ALIASINFO org.apache.derby.
catalog.AliasInfo:

This class is not part of
the public API

 ' true A Java interface that
encapsulates the
additional information
that is specific to an
alias

SPECIFICNAMEVARCHAR 128 false system-generated
identifier

SYSCHECKS system table
Describes the check constraints within the current database.

Column Name Type Length Nullability Contents

CONSTRAINTID CHAR 36 false unique identifier for
the constraint

Java DB Reference Manual

176

Column Name Type Length Nullability Contents

CHECKDEFINITION LONG VARCHAR ' false text of check
constraint definition

REFERENCEDCOLUMNSorg.apache.derby.catalog.
ReferencedColumns:

This class is not
part of the public
API.

 ' false description of the
columns referenced
by the check
constraint

SYSCOLPERMS system table
The SYSCOLPERMS table stores the column permissions that have been granted but
not revoked.

All of the permissions for one (GRANTEE, TABLEID, TYPE, GRANTOR) combination are
specified in a single row in the SYSCOLPERMS table. The keys for the SYSCOLPERMS
table are:

• Primary key (GRANTEE, TABLEID, TYPE, GRANTOR)
• Unique key (COLPERMSID)
• Foreign key (TABLEID references SYS.SYSTABLES)

Column Name Type Length Nullability Contents

COLPERMSID CHAR 36 false Used by the dependency
manager to track the
dependency of a view, trigger,
or constraint on the column
level permissions.

GRANTEE VARCHAR30 false The authorization ID of the
user to whom the privilege was
granted.

GRANTOR VARCHAR30 false The authorization ID of the
user who granted the privilege.
Privileges can be granted only
by the object owner.

TABLEID CHAR 36 false The unique identifier for the
table on which the permissions
have been granted.

TYPE CHAR 1 false The type of column permission:

S for SELECT
U for UPDATE
R for REFERENCES

COLUMNS org.apache.derby.iapi.services.io.FormatableBitSet ' false A list of columns to which the
privilege applies.

This class is not part of the
public API.

SYSCOLUMNS system table

Java DB Reference Manual

177

Describes the columns within all tables in the current database:

Column Name Type Length Nullable Contents

REFERENCEID CHAR 36 false Identifier for table
(join with SYSTABLES.TABLEID)

COLUMNNAME CHAR 128 false column or parameter
name

COLUMNNUMBER INT 4 false the position of the
column within the
table

COLUMNDATATYPE org.apache.derby.catalog.
TypeDescriptor

This class is not
part of the public
API.

 ' false system type that
describes precision,
length, scale,
nullability, type
name, and storage
type of data

COLUMNDEFAULT java.io.Serializable ' true for tables, describes
default value of
the column. The
toString() method
on the object stored
in the table returns
the text of the default
value as specified in
the CREATE TABLE
or ALTER TABLE
statement.

COLUMNDEFAULTID CHAR 36 true unique identifier for
the default value

AUTOINCREMENT
COLUMNVALUE

BIGINT ' true what the next value
for column will be,
if the column is an
identity column

AUTOINCREMENT
COLUMNSTART

BIGINT ' true initial value of column
(if specified), if it is
an identity column

AUTOINCREMENT
COLUMNINC

BIGINT ' true amount column
value is automatically
incremented (if
specified), if the
column is an identity
column

SYSCONGLOMERATES system table
Describes the conglomerates within the current database. A conglomerate is a unit of
storage and is either a table or an index.

Java DB Reference Manual

178

Column Name Type Length Nullable Contents

SCHEMAID CHAR 36 false schema id for the
conglomerate

TABLEID CHAR 36 false identifier for table
(join with SYSTABLES.TABLEID)

CONGLOMERATENUMBERBIGINT 8 false conglomerate
id for the
conglomerate
(heap or index)

CONGLOMERATENAME VARCHAR 128 true index name, if
conglomerate
is an index,
otherwise the table
ID

ISINDEX BOOLEAN 1 false whether or not
conglomerate is
an index

DESCRIPTOR org.apache.derby.
catalog.IndexDescriptor:

This class is not
part of the public
API.

 ' true system type
describing the
index

ISCONSTRAINT BOOLEAN 1 true whether or not
conglomerate is a
system-generated
index enforcing a
constraint

CONGLOMERATEID CHAR 36 false unique
identifier for the
conglomerate

SYSCONSTRAINTS system table
Describes the information common to all types of constraints within the current database
(currently, this includes primary key, unique, foreign key, and check constraints).

Column Name Type Length Nullable Contents

CONSTRAINTID CHAR 36 false unique identifier for
constraint

TABLEID CHAR 36 false identifier for table (join with
SYSTABLES.TABLEID)

CONSTRAINTNAME VARCHAR 128 false constraint name (internally
generated if not specified by
user)

TYPE CHAR 1 false P (primary key), U (unique),
C (check), or F (foreign key)

Java DB Reference Manual

179

Column Name Type Length Nullable Contents

SCHEMAID CHAR 36 false identifier for schema
that the constraint
belongs to (join with
SYSSCHEMAS.SCHEMAID)

STATE CHAR 1 false E for enabled, D for disabled

REFERENCECOUNT INTEGER 1 false the count of the number of
foreign key constraints that
reference this constraint; this
number can be greater than
zero only for PRIMARY KEY
and UNIQUE constraints

SYSDEPENDS system table
The SYSDEPENDS table stores the dependency relationships between persistent
objects in the database.

Persistent objects can be dependents or providers. Dependents are objects that depend
on other objects. Providers are objects that other objects depend on.

• Dependents are views, constraints, or triggers.
• Providers are tables, conglomerates, constraints, or privileges.

Column Name Type Length Nullable Contents

DEPENDENTID CHAR 36 false A unique identifier
for the dependent.

DEPENDENTFINDER org.apache.derby.catalog.
DependableFinder:
This class is not
part of the public
API.

1 false A system type
that describes the
view, constraint, or
trigger that is the
dependent.

PROVIDERID CHAR 36 false A unique identifier
for the provider.

PROVIDERFINDER org.apache.derby.catalog.
DependableFinder
This class is not
part of the public
API.

1 false A system type that
describes the table,
conglomerate,
constraint, and
privilege that is the
provider

SYSFILES system table
Describes jar files stored in the database.

Column Name Type Length Nullability Contents

FILEID CHAR 36 false unique identifier for
the jar file

Java DB Reference Manual

180

Column Name Type Length Nullability Contents

SCHEMAID CHAR 36 false ID of the jar file's
schema (join with
SYSSCHEMAS.
SCHEMAID)

FILENAME VARCHAR 128 false SQL name of the jar
file

GENERATIONID BIGINT ' false Generation number
for the file. When jar
files are replaced,
their generation
identifiers are
changed.

SYSFOREIGNKEYS system table
Describes the information specific to foreign key constraints in the current database.

Derby generates a backing index for each foreign key constraint; the name of this index
is the same as SYSFOREIGNKEYS.CONGLOMERATEID.

Column Name Type Length Nullability Contents

CONSTRAINTID CHAR 36 false unique identifier for the
foreign key constraint (join
with SYSCONSTRAINTS.
CONSTRAINTID)

CONGLOMERATEID CHAR 36 false unique identifier for index
backing up the foreign
key constraint (join with
SYSCONGLOMERATES.
CONGLOMERATEID)

KEYCONSTRAINTID CHAR 36 false unique identifier for the primary
key or unique constraint
referenced by this foreign key
(SYSKEYS.CONSTRAINTID
or SYSCONSTRAINTS.
CONSTRAINTID)

DELETERULE CHAR 1 false R for NO ACTION (default),
S for RESTRICT, C for
CASCADE, U for SET NULL

UPDATERULE CHAR 1 false R for NO ACTION(default), S
for restrict

SYSKEYS system table
Describes the specific information for primary key and unique constraints within
the current database. Derby generates an index on the table to back up each such
constraint. The index name is the same as SYSKEYS.CONGLOMERATEID.

Java DB Reference Manual

181

Column Name Type Length Nullable Contents

CONSTRAINTID CHAR 36 false unique identifier for
constraint

CONGLOMERATEID CHAR 36 false unique identifier for
backing index

SYSROUTINEPERMS system table
The SYSROUTINEPERMS table stores the permissions that have been granted to
routines.

Each routine EXECUTE permission is specified in a row in the SYSROUTINEPERMS
table. The keys for the SYSROUTINEPERMS table are:

• Primary key (GRANTEE, ALIASID, GRANTOR)
• Unique key (ROUTINEPERMSID)
• Foreign key (ALIASID references SYS.SYSALIASES)

The column information for the SYSTABLEPERMS table is listed in the following table:

Column Name Type Length Nullability Contents

ROUTINEPERMSID CHAR 36 false Used by the dependency
manager to track the
dependency of a view, trigger,
or constraint on the routine level
permissions.

GRANTEE VARCHAR30 false The authorization ID of the
user to whom the privilege is
granted.

GRANTOR VARCHAR30 false The authorization ID of the
user who granted the privilege.
Privileges can be granted only
by the object owner.

ALIASID CHAR 36 false The ID of the object of
the required permission.
If PERMTYPE='E' the
ALIASID is a reference
to the SYS.SYSALIASES
table. Otherwise the
ALIASID is a reference to the
SYS.SYSTABLES table.

GRANTOPTION CHAR 1 false Specifies if the GRANTEE is
the owner of the routine. Valid
values are Y and N.

SYSSCHEMAS system table
Describes the schemas within the current database.

Java DB Reference Manual

182

Column Name Type Length Nullability Contents

SCHEMAID CHAR 36 false unique identifier for the
schema

SCHEMANAME VARCHAR 128 false schema name

AUTHORIZATIONID VARCHAR 128 false the authorization identifier of
the owner of the schema

SYSSTATISTICS system table
Describes the schemas within the current database.

Column Name Type Length Nullability Contents

STATID CHAR 36 false unique identifier for the
statistic

REFERENCEID CHAR 36 false the conglomerate for
which the statistic
was created (join with
SYSCONGLOMERATES.
CONGLOMERATEID)

TABLEID CHAR 36 false the table for which the
information is collected

CREATIONTIMESTAMPTIMESTAMP ' false time when this statistic was
created or updated

TYPE CHAR 1 false type of statistics

VALID BOOLEAN ' false whether the statistic is still
valid

COLCOUNT INTEGER ' false number of columns in the
statistic

STATISTICS org.apache.
derby.catalog.
Statistics:

This class
is not part
of the
public API.

 ' true statistics information

SYSSTATEMENTS system table
Contains one row per stored prepared statement.

Column Name Type Length Nullability Contents

STMTID CHAR 36 false unique identifier for
the statement

STMTNAME VARCHAR 128 false name of the
statement

Java DB Reference Manual

183

Column Name Type Length Nullability Contents

SCHEMAID CHAR 36 false the schema in which
the statement resides

TYPE CHAR 1 false always 'S'

VALID BOOLEAN ' false TRUE if valid, FALSE
if invalid

TEXT LONG
VARCHAR

 ' false text of the statement

LASTCOMPILED TIMESTAMP ' true time that the
statement was
compiled

COMPILATION
SCHEMAID

CHAR 36 false id of the schema
containing the
statement

USINGTEXT LONG
VARCHAR

 ' true text of the
USING clause
of the CREATE
STATEMENT and
ALTER STATEMENT
statements

SYSTABLEPERMS system table
The SYSTABLEPERMS table stores the table permissions that have been granted but
not revoked.

All of the permissions for one (GRANTEE, TABLEID, GRANTOR) combination
are specified in a single row in the SYSTABLEPERMS table. The keys for the
SYSTABLEPERMS table are:

• Primary key (GRANTEE, TABLEID, GRANTOR)
• Unique key (TABLEPERMSID)
• Foreign key (TABLEID references SYS.SYSTABLES)

The column information for the SYSTABLEPERMS table is listed in the following table:

Column Name Type Length Nullability Contents

TABLEPERMSID CHAR 36 false Used by the dependency
manager to track the
dependency of a view, trigger,
or constraint on the table level
permissions.

GRANTEE VARCHAR30 false The authorization ID of the
user to whom the privilege is
granted.

GRANTOR VARCHAR30 false The authorization ID of the
user who granted the privilege.
Privileges can be granted only
by the object owner.

Java DB Reference Manual

184

Column Name Type Length Nullability Contents

TABLEID CHAR 36 false The unique identifier for the
table on which the permissions
have been granted.

SELECTPRIV CHAR 1 false Specifies if the SELECT
permission is granted. Valid
values are Y and N.

DELETEPRIV CHAR 1 false Specifies if the DELETE
permission is granted. Valid
values are Y and N.

INSERTPRIV CHAR 1 false Specifies if the INSERT
permission is granted. Valid
values are Y and N.

UPDATEPRIV CHAR 1 false Specifies if the UPDATE
permission is granted. Valid
values are Y and N.

REFERENCEPRIV CHAR 1 false Specifies if the REFERENCE
permission is granted. Valid
values are Y and N.

TRIGGERPRIV CHAR 1 false Specifies if the TRIGGER
permission is granted. Valid
values are Y and N.

SYSTABLES system table
Describes the tables and views within the current database.

Column Name Type Length Nullable Contents

TABLEID CHAR 36 false unique identifier for table or view

TABLENAME VARCHAR 128 false table or view name

TABLETYPE CHAR 1 false 'S' (system table), 'T' (user table),
or 'V' (view)

SCHEMAID CHAR 36 false schema id for the table or view

LOCK GRANULARITYCHAR 1 false Indicates the lock granularity for
the table
'T'

(table level locking)

'R'

(row level locking, the default)

SYSTRIGGERS system table
Describes the database's triggers.

Java DB Reference Manual

185

Column Name Type LengthNullabilityContents

TRIGGERID CHAR 36 false unique identifier for the
trigger

TRIGGERNAME VARCHAR 128 false name of the trigger

SCHEMAID CHAR 36 false id of the trigger's
schema (join with
SYSSCHEMAS.
SCHEMAID)

CREATIONTIMESTAMPTIMESTAMP ' false time the trigger was
created

EVENT CHAR 1 false 'U' for update, 'D' for
delete, 'I' for insert

FIRINGTIME CHAR 1 false 'B' for before 'A' for after

TYPE CHAR 1 false 'R' for row, 'S' for
statement

STATE CHAR 1 false 'E' for enabled, 'D' for
disabled

TABLEID CHAR 36 false id of the table on which
the trigger is defined

WHENSTMTID CHAR 36 true used only if there is a
WHEN clause (not yet
supported)

ACTIONSTMTID CHAR 36 true id of the stored
prepared statement for
the triggered-SQL-
statement (join with
SYSSTATEMENTS.
STMTID)

REFERENCEDCOLUMNSorg.apache.derby.catalog.
ReferencedColumns:
This class is not
part of the public
API.

 ' true descriptor of the
columns referenced by
UPDATE triggers

TRIGGERDEFINITION LONG
VARCHAR

 ' true text of the action SQL
statement

REFERENCINGOLD BOOLEAN ' true whether or not the OLDREFERENCINGNAME,
if non-null, refers to the
OLD row or table

REFERENCINGNEW BOOLEAN ' true whether or not the NEWREFERENCINGNAME,
if non-null, refers to the
NEW row or table

OLDREFERENCINGNAMEVARCHAR 128 true pseudoname
as set using the
REFERENCING OLD
AS clause

Java DB Reference Manual

186

Column Name Type LengthNullabilityContents

NEWREFERENCINGNAMEVARCHAR 128 true pseudoname
as set using the
REFERENCING NEW
AS clause

Any SQL text that is part of a triggered-SQL-statement is compiled and stored in
SYSSTATEMENTS. ACTIONSTMTID and WHENSTMTID are foreign keys that
reference SYSSTATEMENTS.STMTID. The statements for a trigger are always in the
same schema as the trigger.

SYSVIEWS system table
Describes the view definitions within the current database.

Column Name Type Length Nullability Contents

TABLEID CHAR 36 false unique identifier for the
view (called TABLEID
since it is joined with
column of that name in
SYSTABLES)

VIEWDEFINITION LONG VARCHAR ' false text of view definition

CHECKOPTION CHAR 1 false 'N' (check option not
supported yet)

COMPILATION
SCHEMAID

CHAR 36 false id of the schema
containing the view

Java DB Reference Manual

187

Derby exception messages and SQL states

The JDBC driver returns SQLExceptions for all errors from Derby. If the exception
originated in a user type but is not itself an SQLException, it is wrapped in an
SQLException. Derby-specific SQLExceptions use SQLState class codes starting with X.
Standard SQLState values are returned for exceptions where appropriate.

Unimplemented aspects of the JDBC driver return a SQLException with a SQLState
starting with 0A. If your application runs on JDK 1.6 or higher, then the exception class
is java.sql.SQLFeatureNotSupportedException. These unimplemented parts are for
features not supported by Derby.

Derby supplies values for the message and SQLState fields. In addition, Derby
sometimes returns multiple SQLExceptions using the nextException chain. The first
exception is always the most severe exception, with SQL-92 Standard exceptions
preceding those that are specific to Derby.

For information on processing SQLExceptions, see the Java DB Developer's Guide.

SQL error messages and exceptions
The following tables list SQLStates for exceptions. Exceptions that begin with an X are
specific to Derby.

Table 39. Class 01: Warning

SQLSTATE Message Text

01001 An attempt to update or delete an already deleted row was made: No row
was updated or deleted.

01003 Null values were eliminated from the argument of a column function.

01006 Privilege not revoked from user <authorizationID>.

0100E XX Attempt to return too many result sets.

01500 The constraint <constraintName> on table <tableName> has been dropped.

01501 The view <viewName> has been dropped.

01502 The trigger <triggerName> on table <tableName> has been dropped.

01503 The column <columnName> on table <tableName> has been modified by
adding a not null constraint.

01504 The new index is a duplicate of an existing index: <indexName>.

01505 The value <valueName> may be truncated.

01522 The newly defined synonym '<synonymName>' resolved to the object
'<objectName>' which is currently undefined.

01J01 Database '<databaseName>' not created, connection made to existing
database instead.

01J02 Scroll sensitive cursors are not currently implemented.

01J04 The class '<className>' for column '<columnName>' does not implement
java.io.Serializable or java.sql.SQLData. Instances must implement one of
these interfaces to allow them to be stored.

Java DB Reference Manual

188

SQLSTATE Message Text

01J05 Database upgrade succeeded. The upgraded database is now ready for
use. Revalidating stored prepared statements failed. See next exception for
details of failure.

01J06 ResultSet not updatable. Query does not qualify to generate an updatable
ResultSet.

01J07 ResultSetHoldability restricted to
ResultSet.CLOSE_CURSORS_AT_COMMIT for a global transaction.

01J08 Unable to open resultSet type <resultSetType>. ResultSet type
<resultSetType> opened.

01J10 Scroll sensitive result sets are not supported by server; remapping to
forward-only cursor

01J12 Unable to obtain message text from server. See the next exception. The
stored procedure SYSIBM.SQLCAMESSAGE is not installed on the server.
Please contact your database administrator.

01J13 Number of rows returned (<number>) is too large to fit in an integer; the
value returned will be truncated.

01J14 SQL authorization is being used without first enabling authentication.

Table 40. Class 07: Dynamic SQL Error

SQLSTATE Message Text

07000 At least one parameter to the current statement is uninitialized.

07004 Parameter <parameterName> is an <procedureName> procedure parameter
and must be registered with CallableStatement.registerOutParameter before
execution.

07009 No input parameters.

Table 41. Class 08: Connection Exception

SQLSTATE Message Text

08000 Connection closed by unknown interrupt.

08000 Cannot close a connection with an active transaction. The transaction
remains open and the connection was not closed.

08001 A connection could not be established because the security token is larger
than the maximum allowed by the network protocol.

08001 A connection could not be established because the user id has a length of
zero or is larger than the maximum allowed by the network protocol.

08001 A connection could not be established because the password has a length of
zero or is larger than the maximum allowed by the network protocol.

08001 Required Derby DataSource property <propertyName> not set.

08001 <error> : Error connecting to server <serverName> on port <portNumber>
with message <messageText>.

08001 SocketException: '<error>'

Java DB Reference Manual

189

SQLSTATE Message Text

08001 Unable to open stream on socket: '<error>'.

08001 User id length (<number>) is outside the range of 1 to <number>.

08001 Password length (<value>) is outside the range of 1 to <number>.

08001 User id can not be null.

08001 Password can not be null.

08001 A connection could not be established because the database name
'<databaseName>' is larger than the maximum length allowed by the network
protocol.

08003 No current connection.

08003 getConnection() is not valid on a closed PooledConnection.

08003 Lob method called after connection was closed

08003 The underlying physical connection is stale or closed.

08004 Connection refused : <connectionName>

08004 Connection authentication failure occurred. Reason: <reasonText>.

08004 The connection was refused because the database <databaseName> was
not found.

08004 Database connection refused.

08004 User '<authorizationID>' cannot shut down database '<databaseName>'.
Only the database owner can perform this operation.

08004 User '<authorizationID>' cannot (re)encrypt database '<databaseName>'.
Only the database owner can perform this operation.

08004 User '<authorizationID>' cannot hard upgrade database '<databaseName>'.
Only the database owner can perform this operation.

08006 An error occurred during connect reset and the connection has been
terminated. See chained exceptions for details.

08006 Database '<databaseName>' shutdown.

Table 42. Class 0A: Feature not supported

SQLSTATE Message Text

0A000 Feature not implemented: <featureName>.

0A000 The DRDA command <commandName> is not currently implemented. The
connection has been terminated.

0A000 JDBC method is not yet implemented.

0A000 JDBC method <methodName> is not supported by the server. Please
upgrade the server.

0A000 resultSetHoldability property <propertyName> not supported

0A000 cancel() not supported by the server.

0A000 Security mechanism '<mechanismName>' is not supported.

0A000 The data type '<datatypeName>' is not supported.

Java DB Reference Manual

190

Table 43. Class 21: Cardinality Violation

SQLSTATE Message Text

21000 Scalar subquery is only allowed to return a single row.

Table 44. Class 22: Data Exception

SQLSTATE Message Text

22001 A truncation error was encountered trying to shrink <value> '<value>' to
length <value>.

22003 The resulting value is outside the range for the data type <datatypeName>.

22003 Year (<value>) exceeds the maximum '<value>'.

22003 Decimal may only be up to 31 digits.

22003 Overflow occurred during numeric data type conversion of '<datatypeName>'
to <datatypeName>.

22004 The length (<number>) exceeds the maximum length for the data type
(<datatypeName>).

22005 Unable to convert a value of type '<typeName>' to type '<typeName>' : the
encoding is not supported.

22005 The required character converter is not available.

22005 Unicode string cannot convert to Ebcdic string

22005 Unrecognized JDBC type. Type: <typeName>, columnCount: <value>,
columnIndex: <value>.

22005 Invalid JDBC type for parameter <parameterName>.

22005 Unrecognized Java SQL type <datatypeName>.

22005 An attempt was made to get a data value of type '<datatypeName>' from a
data value of type '<datatypeName>'.

22007 The string representation of a datetime value is out of range.

22007 The syntax of the string representation of a datetime value is incorrect.

22008 '<argument>' is an invalid argument to the <functionName> function.

2200L Values assigned to XML columns must be well-formed DOCUMENT nodes.

2200M Invalid XML DOCUMENT: <parserError>

2200V Invalid context item for <operatorName> operator; context items must be
well-formed DOCUMENT nodes.

2200W XQuery serialization error: Attempted to serialize one or more top-level
Attribute nodes.

22011 The second or third argument of the SUBSTR function is out of range.

22012 Attempt to divide by zero.

22013 Attempt to take the square root of a negative number, '<value>'.

22014 The start position for LOCATE is invalid; it must be a positive integer. The
index to start the search from is '<fromString>'. The string to search for is
'<startIndex>'. The string to search from is '<searchString>'.

Java DB Reference Manual

191

SQLSTATE Message Text

22015 Invalid data conversion: requested conversion would result in a loss of
precision of <value>

22015 The '<functionName>' function is not allowed on the following set of
types. First operand is of type '<typeName>'. Second operand is of type
'<typeName>'. Third operand (start position) is of type '<typeName>'.

22018 Invalid character string format for type <typeName>.

22019 Invalid escape sequence, '<sequenceName>'. The escape string must be
exactly one character. It cannot be a null or more than one character.

22020 Invalid trim string, '<string>'. The trim string must be exactly one character or
NULL. It cannot be more than one character.

22025 Escape character must be followed by escape character, '_', or '%'. It cannot
be followed by any other character or be at the end of the pattern.

22027 The built-in TRIM() function only supports a single trim character. The
LTRIM() and RTRIM() built-in functions support multiple trim characters.

22028 The string exceeds the maximum length of <number>.

22501 An ESCAPE clause of NULL returns undefined results and is not allowed.

Table 45. Class 23: Constraint Violation

SQLSTATE Message Text

23502 Column '<columnName>' cannot accept a NULL value.

23503 <constraintName> on table '<tableName>' caused a violation of foreign key
constraint '<value>' for key <keyName>. The statement has been rolled
back.

23505 The statement was aborted because it would have caused a duplicate key
value in a unique or primary key constraint or unique index identified by
'<value>' defined on '<value>'.

23513 The check constraint '<tableName>' was violated while performing an
INSERT or UPDATE on table '<constraintName>'.

Table 46. Class 24: Invalid Cursor State

SQLSTATE Message Text

24000 Invalid cursor state - no current row.

24501 The identified cursor is not open.

Table 47. Class 25: Invalid Transaction State

SQLSTATE Message Text

25000 Invalid transaction state.

25001 Cannot close a connection while a transaction is still active.

25501 Unable to set the connection read-only property in an active transaction.

Java DB Reference Manual

192

SQLSTATE Message Text

25502 An SQL data change is not permitted for a read-only connection, user or
database.

25503 DDL is not permitted for a read-only connection, user or database.

25505 A read-only user or a user in a read-only database is not permitted to disable
read-only mode on a connection.

Table 48. Class 28: Invalid Authorization Specification

SQLSTATE Message Text

28502 The user name '<authorizationID>' is not valid.

Table 49. Class 2D: Invalid Transaction Termination

SQLSTATE Message Text

2D521 setAutoCommit(true) invalid during global transaction.

2D521 COMMIT or ROLLBACK invalid for application execution environment.

Table 50. Class 38: External Function Exception

SQLSTATE Message Text

38000 The exception '<exception>' was thrown while evaluating an expression.

38001 The external routine is not allowed to execute SQL statements.

38002 The routine attempted to modify data, but the routine was not defined as
MODIFIES SQL DATA.

38004 The routine attempted to read data, but the routine was not defined as
READS SQL DATA.

Table 51. Class 39: External Routine Invocation Exception

SQLSTATE Message Text

39004 A NULL value cannot be passed to a method which takes a parameter of
primitive type '<type>'.

Table 52. Class 3B: Invalid SAVEPOINT

SQLSTATE Message Text

3B001 SAVEPOINT, <savepointName> does not exist or is not active in the current
transaction.

3B002 The maximum number of savepoints has been reached.

3B501 A SAVEPOINT with the passed name already exists in the current
transaction.

3B502 A RELEASE or ROLLBACK TO SAVEPOINT was specified, but the
savepoint does not exist.

Java DB Reference Manual

193

Table 53. Class 40: Transaction Rollback

SQLSTATE Message Text

40001 A lock could not be obtained due to a deadlock, cycle of locks and waiters is:
<lockCycle>. The selected victim is XID : <transactionID>.

40XC0 Dead statement. This may be caused by catching a transaction severity error
inside this statement.

40XD0 Container has been closed.

40XD1 Container was opened in read-only mode.

40XD2 Container <containerName> cannot be opened; it either has been dropped
or does not exist.

40XL1 A lock could not be obtained within the time requested

40XL2 A lock could not be obtained within the time requested. The lockTable dump
is: <tableDump>

40XT0 An internal error was identified by RawStore module.

40XT1 An exception was thrown during transaction commit.

40XT2 An exception was thrown during rollback of a SAVEPOINT.

40XT4 An attempt was made to close a transaction that was still active. The
transaction has been aborted.

40XT5 Exception thrown during an internal transaction.

40XT6 Database is in quiescent state, cannot activate transaction. Please wait for a
moment till it exits the quiescent state.

40XT7 Operation is not supported in an internal transaction.

Table 54. Class 42: Syntax Error or Access Rule Violation

SQLSTATE Message Text

42000 Syntax error or access rule violation; see additional errors for details.

42500 User '<authorizationID>' does not have <permissionType> permission on
table '<schemaNamet>'.'<tableName>'.

42501 User '<authorizationID>' does not have <permissionType> permission on
table '<schemaNamet>'.'<tableName>' for grant.

42502 User '<authorizationID>' does not have <permissionType> permission on
column '<columnName>' of table '<schemaName>'.'<tableName>'.

42503 User '<authorizationID>' does not have <permissionType> permission on
column '<columnName>' of table '<schemaName>'.'<tableName>' for grant.

42504 User '<authorizationID>' does not have execute permission on
<objectName> '<schemaName>'.'<tableName>'.

42505 User '<authorizationID>' does not have execute permission on
<objectName> '<schemaName>'.'<tableName>' for grant.

42506 User '<authorizationID>' is not the owner of <objectName>
'<schemaName>'.'<tableName>'.

Java DB Reference Manual

194

SQLSTATE Message Text

42507 User '<authorizationID>' can not perform the operation in schema
'<schemaName>'.

42508 User '<authorizationID>' can not create schema '<schemaName>'. Only
database owner could issue this statement.

42509 Specified grant or revoke operation is not allowed on object '<objectName>'.

4250A User '<authorizationID>' does not have <permissionName> permission on
object '<schemaName>'.'<objectName>'.

4250B Invalid database authorization property '<value>=<value>'.

4250C User(s) '<authorizationID>' must not be in both read-only and full-access
authorization lists.

4250D Repeated user(s) '<listName>' in access list '<authorizationID>';

4250E Internal Error: invalid <authorizationID> id in statement permission list.

42601 In an ALTER TABLE statement, the column '<columnName>' has been
specified as NOT NULL and either the DEFAULT clause was not specified or
was specified as DEFAULT NULL.

42601 ALTER TABLE statement cannot add an IDENTITY column to a table.

42605 The number of arguments for function '<functionName>' is incorrect.

42606 An invalid hexadecimal constant starting with '<number>' has been detected.

42610 All the arguments to the COALESCE/VALUE function cannot be parameters.
The function needs at least one argument that is not a parameter.

42611 The length, precision, or scale attribute for column, or type mapping '<value>'
is not valid.

42613 Multiple or conflicting keywords involving the '<clause>' clause are present.

42621 A check constraint or generated column that is defined with '<value>' is
invalid.

42622 The name '<name>' is too long. The maximum length is '<number>'.

42734 Name '<name>' specified in context '<context>' is not unique.

42802 The number of values assigned is not the same as the number of specified
or implied columns.

42803 An expression containing the column '<columnName>' appears in the
SELECT list and is not part of a GROUP BY clause.

42815 The replacement value for '<value>' is invalid.

42815 The data type, length or value of arguments '<value>' and '<value>' is
incompatible.

42818 Comparisons between '<type>' and '<type>' are not supported.

42820 The floating point literal '<string>' contains more than 30 characters.

42821 Columns of type '<type>' cannot hold values of type '<type>'.

42824 An operand of LIKE is not a string, or the first operand is not a column.

42831 '<columnName>' cannot be a column of a primary key or unique key
because it can contain null values.

Java DB Reference Manual

195

SQLSTATE Message Text

42834 SET NULL cannot be specified because FOREIGN KEY '<key>' cannot
contain null values.

42837 ALTER TABLE '<tableName>' specified attributes for column
'<columnName>' that are not compatible with the existing column.

42846 Cannot convert types '<type>' to '<type>'.

42877 A qualified column name '<columnName>' is not allowed in the ORDER BY
clause.

42878 The ORDER BY clause of a SELECT UNION statement only supports
unqualified column references and column position numbers. Other
expressions are not currently supported.

42884 No authorized routine named '<routineName>' of type '<type>' having
compatible arguments was found.

42886 '<value>' parameter '<value>' requires a parameter marker '?'.

42894 DEFAULT value or IDENTITY attribute value is not valid for column
'<columnName>'.

428C1 Only one identity column is allowed in a table.

428EK The qualifier for a declared global temporary table name must be SESSION.

42903 Invalid use of an aggregate function.

42908 The CREATE VIEW statement does not include a column list.

42909 The CREATE TABLE statement does not include a column list.

42915 Foreign Key '<key>' is invalid because '<value>'.

42916 Synonym '<synonym2>' cannot be created for '<synonym1>' as it would
result in a circular synonym chain.

42939 An object cannot be created with the schema name '<schemaNamet>'.

42962 Long column type column or parameter '<columnName>' not permitted in
declared global temporary tables or procedure definitions.

42972 An ON clause associated with a JOIN operator is not valid.

42995 The requested function does not apply to global temporary tables.

42X01 Syntax error: <error>.

42X02 <value>.

42X03 Column name '<columnName>' is in more than one table in the FROM list.

42X04 Column '<columnName>' is either not in any table in the FROM list or
appears within a join specification and is outside the scope of the join
specification or appears in a HAVING clause and is not in the GROUP BY
list. If this is a CREATE or ALTER TABLE statement then '<columnName>' is
not a column in the target table.

42X05 Table/View '<objectName>' does not exist.

42X06 Too many result columns specified for table '<tableName>'.

42X07 Null is only allowed in a VALUES clause within an INSERT statement.

42X08 The constructor for class '<className>' cannot be used as an external
virtual table because the class does not implement '<constructorName>'.

Java DB Reference Manual

196

SQLSTATE Message Text

42X09 The table or alias name '<tableName>' is used more than once in the FROM
list.

42X10 '<tableName>' is not an exposed table name in the scope in which it
appears.

42X12 Column name '<columnName>' appears more than once in the CREATE
TABLE statement.

42X13 Column name '<columnName>' appears more than once times in the column
list of an INSERT statement.

42X14 '<columnName>' is not a column in table or VTI '<value>'.

42X15 Column name '<columnName>' appears in a statement without a FROM list.

42X16 Column name '<columnName>' appears multiple times in the SET clause of
an UPDATE statement.

42X17 In the Properties list of a FROM clause, the value '<value>' is not valid as a
joinOrder specification. Only the values FIXED and UNFIXED are valid.

42X19 The WHERE or HAVING clause or CHECK CONSTRAINT definition is a
'<value>' expression. It must be a BOOLEAN expression.

42X23 Cursor <cursorName> is not updatable.

42X24 Column <columnName> is referenced in the HAVING clause but is not in the
GROUP BY list.

42X25 The '<functionName>' function is not allowed on the '<1>' type.

42X26 The class '<className>' for column '<columnName>' does not exist or is
inaccessible. This can happen if the class is not public.

42X28 Delete table '<tableName>' is not target of cursor '<cursorName>'.

42X29 Update table '<tableName>' is not the target of cursor '<cursorName>'.

42X30 Cursor '<cursorName>' not found. Verify that autocommit is OFF.

42X31 Column '<columnName>' is not in the FOR UPDATE list of cursor
'<cursorName>'.

42X32 The number of columns in the derived column list must match the number of
columns in table '<tableName>'.

42X33 The derived column list contains a duplicate column name '<columnName>'.

42X34 There is a ? parameter in the select list. This is not allowed.

42X35 It is not allowed for both operands of '<value>' to be ? parameters.

42X36 The '<operator>' operator is not allowed to take a ? parameter as an
operand.

42X37 The unary '<operator>' operator is not allowed on the '<type>' type.

42X38 'SELECT *' only allowed in EXISTS and NOT EXISTS subqueries.

42X39 Subquery is only allowed to return a single column.

42X40 A NOT statement has an operand that is not boolean . The operand of NOT
must evaluate to TRUE, FALSE, or UNKNOWN.

42X41 In the Properties clause of a FROM list, the property '<propertyName>' is not
valid (the property was being set to '<value>').

Java DB Reference Manual

197

SQLSTATE Message Text

42X42 Correlation name not allowed for column '<columnName>' because it is part
of the FOR UPDATE list.

42X43 The ResultSetMetaData returned for the class/object '<className>'
was null. In order to use this class as an external virtual table, the
ResultSetMetaData cannot be null.

42X44 Invalid length '<number>' in column specification.

42X45 <type> is an invalid type for argument number <value> of <value>.

42X46 There are multiple functions named '<functionName>'. Use the full signature
or the specific name.

42X47 There are multiple procedures named '<procedureName>'. Use the full
signature or the specific name.

42X48 Value '<value>' is not a valid precision for <value>.

42X49 Value '<value>' is not a valid integer literal.

42X50 No method was found that matched the method call
<methodName>.<value>(<value>), tried all combinations of object and
primitive types and any possible type conversion for any parameters the
method call may have. The method might exist but it is not public and/or
static, or the parameter types are not method invocation convertible.

42X51 The class '<className>' does not exist or is inaccessible. This can happen if
the class is not public.

42X52 Calling method ('<methodName>') using a receiver of the Java primitive type
'<type>' is not allowed.

42X53 The LIKE predicate can only have 'CHAR' or 'VARCHAR' operands. Type
'<type>' is not permitted.

42X54 The Java method '<methodName>' has a ? as a receiver. This is not
allowed.

42X55 Table name '<value>' should be the same as '<tableName>'.

42X56 The number of columns in the view column list does not match the number
of columns in the underlying query expression in the view definition for
'<value>'.

42X57 The getColumnCount() for external virtual table '<tableName>' returned an
invalid value '<value>'. Valid values are greater than or equal to 1.

42X58 The number of columns on the left and right sides of the <tableName> must
be the same.

42X59 The number of columns in each VALUES constructor must be the same.

42X60 Invalid value '<value>' for insertMode property specified for table
'<tableName>'.

42X61 Types '<type>' and '<type>' are not <value> compatible.

42X62 '<value>' is not allowed in the '<schemaNamet>' schema.

42X63 The USING clause did not return any results. No parameters can be set.

42X64 In the Properties list, the invalid value '<value>' was specified for the
useStatistics property. The only valid values are TRUE or FALSE.

Java DB Reference Manual

198

SQLSTATE Message Text

42X65 Index '<index>' does not exist.

42X66 Column name '<columnName>' appears more than once in the CREATE
INDEX statement.

42X68 No field '<fieldName>' was found belonging to class '<className>'. It may
be that the field exists, but it is not public, or that the class does not exist or
is not public.

42X69 It is not allowed to reference a field ('<fieldName>') using a referencing
expression of the Java primitive type '<type>'.

42X70 The number of columns in the table column list does not match the number
of columns in the underlying query expression in the table definition for
'<value>'.

42X71 Invalid data type '<datatypeName>' for column '<columnName>'.

42X72 No static field '<fieldName>' was found belonging to class '<className>'.
The field might exist, but it is not public and/or static, or the class does not
exist or the class is not public.

42X73 Method resolution for signature <value>.<value>(<value>) was ambiguous.
(No single maximally specific method.)

42X74 Invalid CALL statement syntax.

42X75 No constructor was found with the signature <value>(<value>). It may be that
the parameter types are not method invocation convertible.

42X76 At least one column, '<columnName>', in the primary key being added is
nullable. All columns in a primary key must be non-nullable.

42X77 Column position '<columnPosition>' is out of range for the query expression.

42X78 Column '<columnName>' is not in the result of the query expression.

42X79 Column name '<columnName>' appears more than once in the result of the
query expression.

42X80 VALUES clause must contain at least one element. Empty elements are not
allowed.

42X82 The USING clause returned more than one row. Only single-row ResultSets
are permissible.

42X83 The constraints on column '<columnName>' require that it be both nullable
and not nullable.

42X84 Index '<index>' was created to enforce constraint '<constraintName>'. It can
only be dropped by dropping the constraint.

42X85 Constraint '<constraintName>'is required to be in the same schema as table
'<tableName>'.

42X86 ALTER TABLE failed. There is no constraint '<constraintName>' on table
'<tableName>'.

42X87 At least one result expression (THEN or ELSE) of the '<expression>'
expression must not be a '?'.

42X88 A conditional has a non-Boolean operand. The operand of a conditional must
evaluate to TRUE, FALSE, or UNKNOWN.

42X89

Java DB Reference Manual

199

SQLSTATE Message Text

Types '<type>' and '<type>' are not type compatible. Neither type is
assignable to the other type.

42X90 More than one primary key constraint specified for table '<tableName>'.

42X91 Constraint name '<constraintName>' appears more than once in the
CREATE TABLE statement.

42X92 Column name '<columnName>' appears more than once in a constraint's
column list.

42X93 Table '<tableName>' contains a constraint definition with column
'<columnName>' which is not in the table.

42X94 <value> '<value>' does not exist.

42X96 The database class path contains an unknown jar file '<fileName>'.

42X98 Parameters are not allowed in a VIEW definition.

42X99 Parameters are not allowed in a TABLE definition.

42Y00 Class '<className>' does not implement
org.apache.derby.iapi.db.AggregateDefinition and thus cannot be used as an
aggregate expression.

42Y01 Constraint '<constraintName>' is invalid.

42Y03 '<statement>' is not recognized as a function or procedure.

42Y04 Cannot create a procedure or function with EXTERNAL NAME '<name>'
because it is not a list separated by periods. The expected format is <full
java path>.<method name>.

42Y05 There is no Foreign Key named '<key>'.

42Y07 Schema '<schemaNamet>' does not exist

42Y08 Foreign key constraints are not allowed on system tables.

42Y09 Void methods are only allowed within a CALL statement.

42Y10 A table constructor that is not in an INSERT statement has all ? parameters
in one of its columns. For each column, at least one of the rows must have a
non-parameter.

42Y11 A join specification is required with the '<clauseName>' clause.

42Y12 The ON clause of a JOIN is a '<expressionType>' expression. It must be a
BOOLEAN expression.

42Y13 Column name '<columnName>' appears more than once in the CREATE
VIEW statement.

42Y16 No public static method '<methodName>' was found in class '<className>'.
The method might exist, but it is not public, or it is not static.

42Y22 Aggregate <aggregateType> cannot operate on type <type>.

42Y23 Incorrect JDBC type info returned for column <colunmName>.

42Y24 View '<viewName>' is not updatable. (Views are currently not updatable.)

42Y25 '<tableName>' is a system table. Users are not allowed to modify the
contents of this table.

42Y26 Aggregates are not allowed in the GROUP BY list.

Java DB Reference Manual

200

SQLSTATE Message Text

42Y27 Parameters are not allowed in the trigger action.

42Y29 The SELECT list of a non-grouped query contains at least one invalid
expression. When the SELECT list contains at least one aggregate then all
entries must be valid aggregate expressions.

42Y30 The SELECT list of a grouped query contains at least one invalid expression.
If a SELECT list has a GROUP BY, the list may only contain valid grouping
expressions and valid aggregate expressions.

42Y32 Aggregator class '<className>' for aggregate '<aggregateName>' on type
<type> does not implement com.ibm.db2j.aggregates.Aggregator.

42Y33 Aggregate <aggregateName> contains one or more aggregates.

42Y34 Column name '<columnName>' matches more than one result column in
table '<tableName>'.

42Y35 Column reference '<reference>' is invalid. When the SELECT list contains at
least one aggregate then all entries must be valid aggregate expressions.

42Y36 Column reference '<reference>' is invalid. For a SELECT list with a GROUP
BY, the list may only contain valid grouping expressions and valid aggregate
expressions.

42Y37 '<value>' is a Java primitive and cannot be used with this operator.

42Y38 insertMode = replace is not permitted on an insert where the target table,
'<tableName>', is referenced in the SELECT.

42Y39 '<value>' may not appear in a CHECK CONSTRAINT definition because it
may return non-deterministic results.

42Y40 '<value>' appears multiple times in the UPDATE OF column list for trigger
'<triggerName>'.

42Y41 '<value>' cannot be directly invoked via EXECUTE STATEMENT because it
is part of a trigger.

42Y42 Scale '<value>' is not a valid scale for a <scaleValue>.

42Y43 Scale '<scaleValue>' is not a valid scale with precision of '<precision>'.

42Y44 Invalid key '<key>' specified in the Properties list of a FROM list. The
case-sensitive keys that are currently supported are '<key>'.

42Y45 VTI '<value>' cannot be bound because it is a special trigger VTI and this
statement is not part of a trigger action or WHEN clause.

42Y46 Invalid Properties list in FROM list. There is no index '<index>' on table
'<tableName>'.

42Y48 Invalid Properties list in FROM list. Either there is no named constraint
'<constraintName>' on table '<tableName>' or the constraint does not have a
backing index.

42Y49 Multiple values specified for property key '<key>'.

42Y50 Properties list for table '<tableName>' may contain values for index or for
constraint but not both.

42Y55 '<value>' cannot be performed on '<value>' because it does not exist.

Java DB Reference Manual

201

SQLSTATE Message Text

42Y56 Invalid join strategy '<strategyValue>' specified in Properties list on table
'<tableName>'. The currently supported values for a join strategy are: 'hash'
and 'nestedloop'.

42Y58 NumberFormatException occurred when converting value '<value>' for
optimizer override '<value>'.

42Y59 Invalid value, '<value>', specified for hashInitialCapacity override. Value must
be greater than 0.

42Y60 Invalid value, '<value>', specified for hashLoadFactor override. Value must
be greater than 0.0 and less than or equal to 1.0.

42Y61 Invalid value, '<value>', specified for hashMaxCapacity override. Value must
be greater than 0.

42Y62 '<statement>' is not allowed on '<viewName>' because it is a view.

42Y63 Hash join requires an optimizable equijoin predicate on a column in the
selected index or heap. An optimizable equijoin predicate does not exist on
any column in table or index '<index>'. Use the 'index' optimizer override to
specify such an index or the heap on table '<tableName>'.

42Y64 bulkFetch value of '<value>' is invalid. The minimum value for bulkFetch is 1.

42Y65 bulkFetch is not permitted on '<joinType>' joins.

42Y66 bulkFetch is not permitted on updatable cursors.

42Y67 Schema '<schemaNamet>' cannot be dropped.

42Y69 No valid execution plan was found for this statement. This may have one of
two causes: either you specified a hash join strategy when hash join is not
allowed (no optimizable equijoin) or you are attempting to join two external
virtual tables, each of which references the other, and so the statement
cannot be evaluated.

42Y70 The user specified an illegal join order. This could be caused by a join
column from an inner table being passed as a parameter to an external
virtual table.

42Y71 System function or procedure '<procedureName>' cannot be dropped.

42Y82 System generated stored prepared statement '<statement>' that cannot be
dropped using DROP STATEMENT. It is part of a trigger.

42Y83 An untyped null is not permitted as an argument to aggregate
<aggregateName>. Please cast the null to a suitable type.

42Y84 '<value>' may not appear in a DEFAULT definition.

42Y85 The DEFAULT keyword is only allowed in a VALUES clause when the
VALUES clause appears within an INSERT statement.

42Y90 FOR UPDATE is not permitted in this type of statement.

42Y91 The USING clause is not permitted in an EXECUTE STATEMENT for a
trigger action.

42Y92 <triggerName> triggers may only reference <value> transition
variables/tables.

42Y93 Illegal REFERENCING clause: only one name is permitted for each type of
transition variable/table.

Java DB Reference Manual

202

SQLSTATE Message Text

42Y94 An AND or OR has a non-boolean operand. The operands of AND and OR
must evaluate to TRUE, FALSE, or UNKNOWN.

42Y95 The '<operatorName>' operator with a left operand type of '<operandType>'
and a right operand type of '<operandType>' is not supported.

42Y97 Invalid escape character at line '<lineNumber>', column '<columnName>'.

42Z02 Multiple DISTINCT aggregates are not supported at this time.

42Z07 Aggregates are not permitted in the ON clause.

42Z08 Bulk insert replace is not permitted on '<value>' because it has an enabled
trigger (<value>).

42Z15 Invalid type specified for column '<columnName>'. The type of a column may
not be changed.

42Z16 Only columns of type VARCHAR may have their length altered.

42Z17 Invalid length specified for column '<columnName>'. Length must be greater
than the current column length.

42Z18 Column '<columnName>' is part of a foreign key constraint
'<constraintName>'. To alter the length of this column, you should drop the
constraint first, perform the ALTER TABLE, and then recreate the constraint.

42Z19 Column '<columnName>' is being referenced by at least one foreign key
constraint '<constraintName>'. To alter the length of this column, you should
drop referencing constraints, perform the ALTER TABLE and then recreate
the constraints.

42Z20 Column '<columnName>' cannot be made nullable. It is part of a primary key
or unique constraint, which cannot have any nullable columns.

42Z21 Invalid increment specified for identity for column '<columnName>'.
Increment cannot be zero.

42Z22 Invalid type specified for identity column '<columnName>'. The only valid
types for identity columns are BIGINT, INT and SMALLINT.

42Z23 Attempt to modify an identity column '<columnName>'.

42Z24 Overflow occurred in identity value for column '<tableName>' in table
'<columnName>'.

42Z25 INTERNAL ERROR identity counter. Update was called without arguments
with current value \= NULL.

42Z26 A column, '<columnName>', with an identity default cannot be made nullable.

42Z27 A nullable column, '<columnName>', cannot be modified to have identity
default.

42Z50 INTERNAL ERROR: Unable to generate code for <value>.

42Z53 INTERNAL ERROR: Type of activation to generate for node choice <value>
is unknown.

42Z60 <value> not allowed unless database property <propertyName> has value
'<value>'.

42Z70 Binding directly to an XML value is not allowed; try using XMLPARSE.

Java DB Reference Manual

203

SQLSTATE Message Text

42Z71 XML values are not allowed in top-level result sets; try using
XMLSERIALIZE.

42Z72 Missing SQL/XML keyword(s) '<keywords>' at line <lineNumber>, column
<columnNumber>.

42Z73 Invalid target type for XMLSERIALIZE: '<typeName>'.

42Z74 XML feature not supported: '<featureName>'.

42Z75 XML query expression must be a string literal.

42Z76 Multiple XML context items are not allowed.

42Z77 Context item must have type 'XML'; '<value>' is not allowed.

42Z79 Unable to determine the parameter type for XMLPARSE; try using a CAST.

42Z90 Class '<className>' does not return an updatable ResultSet.

42Z91 subquery

42Z92 repeatable read

42Z93 Constraints '<constraintName>' and '<constraintName>' have the same set
of columns, which is not allowed.

42Z97 Renaming column '<columnName>' will cause check constraint
'<constraintName>' to break.

42Z99 String or Hex literal cannot exceed 64K.

42Z9A read uncommitted

42Z9B The external virtual table interface does not support BLOB or CLOB
columns. '<value>' column '<value>'.

42Z9D Procedures that modify SQL data are not allowed in BEFORE triggers.

42Z9D '<statement>' statements are not allowed in '<triggerName>' triggers.

42Z9E Constraint '<constraintName>' is not a <value> constraint.

42Z9F Too many indexes (<index>) on the table <tableName>. The limit is
<number>.

42ZA0 Statement too complex. Try rewriting the query to remove complexity.
Eliminating many duplicate expressions or breaking up the query and storing
interim results in a temporary table can often help resolve this error.

42ZA1 Invalid SQL in Batch: '<batch>'.

42ZA2 Operand of LIKE predicate with type <type> and collation <value> is not
compatable with LIKE pattern operand with type <type> and collation
<value>.

42ZA3 The table will have collation type <type> which is different than the collation
of the schema <type> hence this operation is not supported .

Table 55. Class 57: DRDA Network Protocol: Execution Failure

SQLSTATE Message Text

57017 There is no available conversion for the source code page, <codePage>, to
the target code page, <codePage>. The connection has been terminated.

Java DB Reference Manual

204

Table 56. Class 58: DRDA Network Protocol: Protocol Error

SQLSTATE Message Text

58009 Network protocol exception: only one of the VCM, VCS length can be greater
than 0. The connection has been terminated.

58009 The connection was terminated because the encoding is not supported.

58009 Network protocol exception: actual code point, <value>, does not match
expected code point, <value>. The connection has been terminated.

58009 Network protocol exception: DDM collection contains less than 4 bytes of
data. The connection has been terminated.

58009 Network protocol exception: collection stack not empty at end of same id
chain parse. The connection has been terminated.

58009 Network protocol exception: DSS length not 0 at end of same id chain parse.
The connection has been terminated.

58009 Network protocol exception: DSS chained with same id at end of same id
chain parse. The connection has been terminated.

58009 Network protocol exception: end of stream prematurely reached while
reading InputStream, parameter #<value>. The connection has been
terminated.

58009 Network protocol exception: invalid FDOCA LID. The connection has been
terminated.

58009 Network protocol exception: SECTKN was not returned. The connection has
been terminated.

58009 Network protocol exception: only one of NVCM, NVCS can be non-null. The
connection has been terminated.

58009 Network protocol exception: SCLDTA length, <length>, is invalid for
RDBNAM. The connection has been terminated.

58009 SocketException: '<error>'

58009 A communications error has been detected: <error>.

58009 An error occurred during a deferred connect reset and the connection has
been terminated. See chained exceptions for details.

58009 Insufficient data while reading from the network - expected a minimum of
<number> bytes and received only <number> bytes. The connection has
been terminated.

58009 Attempt to fully materialize lob data that is too large for the JVM. The
connection has been terminated.

58009 Network protocol exception: SCLDTA length, <length>, is invalid for
RDBCOLID. The connection has been terminated.

58009 Network protocol exception: SCLDTA length, <length>, is invalid for PKGID.
The connection has been terminated.

58009 Network protocol exception: PKGNAMCSN length, <length>, is invalid at
SQLAM <value>. The connection has been terminated.

58009 A network protocol error was encountered and the connection has been
terminated: <error>

Java DB Reference Manual

205

SQLSTATE Message Text

58010 A network protocol error was encountered. A connection could not be
established because the manager <value> at level <value> is not supported
by the server.

58014 The DDM command 0x<value> is not supported. The connection has been
terminated.

58015 The DDM object 0x<value> is not supported. The connection has been
terminated.

58016 The DDM parameter 0x<value> is not supported. The connection has been
terminated.

58017 The DDM parameter value 0x<value> is not supported. An input host
variable may not be within the range the server supports. The connection
has been terminated.

Table 57. Class X0: Execution exceptions

SQLSTATE Message Text

X0A00 The select list mentions column '<columnName>' twice. This is not allowed
in queries with GROUP BY or HAVING clauses. Try aliasing one of the
conflicting columns to a unique name.

X0X02 Table '<tableName>' cannot be locked in '<mode>' mode.

X0X03 Invalid transaction state - held cursor requires same isolation level

X0X05 Table/View '<tableName>' does not exist.

X0X07 Cannot remove jar file '<fileName>' because it is on your
derby.database.classpath '<fileName>'.

X0X0E Table '<tableName>' does not have an auto-generated column at column
position '<columnPosition>'.

X0X0F Table '<tableName>' does not have an auto-generated column named
'<columnName>'.

X0X10 The USING clause returned more than one row; only single-row ResultSets
are permissible.

X0X11 The USING clause did not return any results so no parameters can be set.

X0X13 Jar file '<fileName>' does not exist in schema '<schemaNamet>'.

X0X57 An attempt was made to put a Java value of type '<type>' into a SQL value,
but there is no corresponding SQL type. The Java value is probably the
result of a method call or field access.

X0X60 A cursor with name '<cursorName>' already exists.

X0X61 The values for column '<location>' in index '<columnName>' and
table '<indexName>.<schemaNamet>' do not match for row location
<tableName>. The value in the index is '<value>', while the value in the
base table is '<value>'. The full index key, including the row location, is
'<indexKey>'. The suggested corrective action is to recreate the index.

X0X62 Inconsistency found between table '<tableName>' and index '<indexName>'.
Error when trying to retrieve row location '<rowLocation>' from the table. The

Java DB Reference Manual

206

SQLSTATE Message Text

full index key, including the row location, is '<indexKey>'. The suggested
corrective action is to recreate the index.

X0X63 Got IOException '<value>'.

X0X67 Columns of type '<type>' may not be used in CREATE INDEX, ORDER
BY, GROUP BY, UNION, INTERSECT, EXCEPT or DISTINCT statements
because comparisons are not supported for that type.

X0X81 <value> '<value>' does not exist.

X0X85 Index '<indexName>' was not created because '<indexType>' is not a valid
index type.

X0X86 0 is an invalid parameter value for ResultSet.absolute(int row).

X0X87 ResultSet.relative(int row) cannot be called when the cursor is not positioned
on a row.

X0X95 Operation '<operationName>' cannot be performed on object '<objectName>'
because there is an open ResultSet dependent on that object.

X0X99 Index '<indexName>' does not exist.

X0Y16 '<value>' is not a view. If it is a table, then use DROP TABLE instead.

X0Y23 Operation '<operationName>' cannot be performed on object '<objectName>'
because VIEW '<viewName>' is dependent on that object.

X0Y24 Operation '<operationName>' cannot be performed on object '<objectName>'
because STATEMENT '<statement>' is dependent on that object.

X0Y25 Operation '<operationName>' cannot be performed on object '<objectName>'
because <value> '<value>' is dependent on that object.

X0Y26 Index '<indexName>' is required to be in the same schema as table
'<tableName>'.

X0Y28 Index '<indexName>' cannot be created on system table '<tableName>'.
Users cannot create indexes on system tables.

X0Y32 <value> '<value>' already exists in <value> '<value>'.

X0Y38 Cannot create index '<indexName>' because table '<tableName>' does not
exist.

X0Y41 Constraint '<constraintName>' is invalid because the referenced table
<tableName> has no primary key. Either add a primary key to <tableName>
or explicitly specify the columns of a unique constraint that this foreign key
references.

X0Y42 Constraint '<constraintName>' is invalid: the types of the foreign key columns
do not match the types of the referenced columns.

X0Y43 Constraint '<constraintName>' is invalid: the number of columns in
<constraintName> (<value>) does not match the number of columns in the
referenced key (<value>).

X0Y44 Constraint '<constraintName>' is invalid: there is no unique or primary key
constraint on table '<tableName>' that matches the number and types of the
columns in the foreign key.

X0Y45 Foreign key constraint '<constraintName>' cannot be added to or enabled on
table <tableName> because one or more foreign keys do not have matching
referenced keys.

Java DB Reference Manual

207

SQLSTATE Message Text

X0Y46 Constraint '<constraintName>' is invalid: referenced table <tableName> does
not exist.

X0Y54 Schema '<schemaNamet>' cannot be dropped because it is not empty.

X0Y55 The number of rows in the base table does not match the number of rows
in at least 1 of the indexes on the table. Index '<indexName>' on table
'<schemaNamet>.<tableName>' has <number> rows, but the base table has
<number> rows. The suggested corrective action is to recreate the index.

X0Y56 '<value>' is not allowed on the System table '<tableName>'.

X0Y57 A non-nullable column cannot be added to table '<tableName>' because the
table contains at least one row. Non-nullable columns can only be added to
empty tables.

X0Y58 Attempt to add a primary key constraint to table '<tableName>' failed
because the table already has a constraint of that type. A table can only have
a single primary key constraint.

X0Y59 Attempt to add or enable constraint(s) on table '<rowName>' failed because
the table contains <constraintName> row(s) that violate the following check
constraint(s): <tableName>.

X0Y63 The command on table '<tableName>' failed because null data was found
in the primary key or unique constraint/index column(s). All columns in a
primary or unique index key must not be null.

X0Y66 Cannot issue commit in a nested connection when there is a pending
operation in the parent connection.

X0Y67 Cannot issue rollback in a nested connection when there is a pending
operation in the parent connection.

X0Y68 <value> '<value>' already exists.

X0Y69 <triggerName> is not supported in trigger <value>.

X0Y70 INSERT, UPDATE and DELETE are not permitted on table <triggerName>
because trigger <tableName> is active.

X0Y71 Transaction manipulation such as SET ISOLATION is not permitted because
trigger <triggerName> is active.

X0Y72 Bulk insert replace is not permitted on '<value>' because it has an enabled
trigger (<value>).

X0Y77 Cannot issue set transaction isolation statement on a global transaction
that is in progress because it would have implicitly committed the global
transaction.

X0Y78 Statement.executeQuery() cannot be called with a statement that returns a
row count.

X0Y78 <value>.executeQuery() cannot be called because multiple result sets were
returned. Use <value>.execute() to obtain multiple results.

X0Y78 <value>.executeQuery() was called but no result set was returned. Use
<value>.executeUpdate() for non-queries.

X0Y79 Statement.executeUpdate() cannot be called with a statement that returns a
ResultSet.

X0Y80

Java DB Reference Manual

208

SQLSTATE Message Text

ALTER table '<tableName>' failed. Null data found in column
'<columnName>'.

X0Y83 WARNING: While deleting a row from a table the index row for base table
row <rowName> was not found in index with conglomerate id <id>. This
problem has automatically been corrected as part of the delete operation.

Table 58. Class XBCA: CacheService

SQLSTATE Message Text

XBCA0 Cannot create new object with key <cache> in <key> cache. The object
already exists in the cache.

Table 59. Class XBCM: ClassManager

SQLSTATE Message Text

XBCM1 Java linkage error thrown during load of generated class <className>.

XBCM2 Cannot create an instance of generated class <className>.

XBCM3 Method <className>() does not exist in generated class <methodName>.

XBCM4 Java class file format limit(s) exceeded: <className> in generated class
<value>.

Table 60. Class XBCX: Cryptography

SQLSTATE Message Text

XBCX0 Exception from Cryptography provider. See next exception for details.

XBCX1 Initializing cipher with illegal mode, must be either ENCRYPT or DECRYPT.

XBCX2 Initializing cipher with a boot password that is too short. The password must
be at least <number> characters long.

XBCX5 Cannot change boot password to null.

XBCX6 Cannot change boot password to a non-string serializable type.

XBCX7 Wrong format for changing boot password. Format must be :
old_boot_password, new_boot_password.

XBCX8 Cannot change boot password for a non-encrypted database.

XBCX9 Cannot change boot password for a read-only database.

XBCXA Wrong boot password.

XBCXB Bad encryption padding '<value>' or padding not specified. 'NoPadding' must
be used.

XBCXC Encryption algorithm '<algorithmName>' does not exist. Please check that
the chosen provider '<providerName>' supports this algorithm.

XBCXD The encryption algorithm cannot be changed after the database is created.

XBCXE The encryption provider cannot be changed after the database is created.

Java DB Reference Manual

209

SQLSTATE Message Text

XBCXF The class '<className>' representing the encryption provider cannot be
found.

XBCXG The encryption provider '<providerName>' does not exist.

XBCXH The encryptionAlgorithm '<algorithmName>' is not in the correct format. The
correct format is algorithm/feedbackMode/NoPadding.

XBCXI The feedback mode '<mode>' is not supported. Supported feedback modes
are CBC, CFB, OFB and ECB.

XBCXJ The application is using a version of the Java Cryptography Extension (JCE)
earlier than 1.2.1. Please upgrade to JCE 1.2.1 and try the operation again.

XBCXK The given encryption key does not match the encryption key used when
creating the database. Please ensure that you are using the correct
encryption key and try again.

XBCXL The verification process for the encryption key was not successful. This
could have been caused by an error when accessing the appropriate file to
do the verification process. See next exception for details.

XBCXM The length of the external encryption key must be an even number.

XBCXN The external encryption key contains one or more illegal characters. Allowed
characters for a hexadecimal number are 0-9, a-f and A-F.

XBCXO Cannot encrypt the database when there is a global transaction in the
prepared state.

XBCXP Cannot re-encrypt the database with a new boot password or an external
encryption key when there is a global transaction in the prepared state.

XBCXQ Cannot configure a read-only database for encryption.

XBCXR Cannot re-encrypt a read-only database with a new boot password or an
external encryption key .

XBCXS Cannot configure a database for encryption, when database is in the log
archive mode.

XBCXT Cannot re-encrypt a database with a new boot password or an external
encryption key, when database is in the log archive mode.

XBCXU Encryption of an un-encrypted database failed: <failureMessage>

XBCXV Encryption of an encrypted database with a new key or a new password
failed: <failureMessage>

Table 61. Class XBM: Monitor

SQLSTATE Message Text

XBM01 Startup failed due to an exception. See next exception for details.

XBM02 Startup failed due to missing functionality for <value>. Please ensure your
classpath includes the correct Derby software.

XBM05 Startup failed due to missing product version information for <value>.

XBM06 Startup failed. An encrypted database cannot be accessed without the
correct boot password.

XBM07 Startup failed. Boot password must be at least 8 bytes long.

Java DB Reference Manual

210

SQLSTATE Message Text

XBM08 Could not instantiate <value> StorageFactory class <value>.

XBM0G Failed to start encryption engine. Please make sure you are running Java 2
and have downloaded an encryption provider such as jce and put it in your
class path.

XBM0H Directory <directoryName> cannot be created.

XBM0I Directory <directoryName> cannot be removed.

XBM0J Directory <directoryName> already exists.

XBM0K Unknown sub-protocol for database name <databaseName>.

XBM0L Specified authentication scheme class <className> does implement the
authentication interface <interfaceName>.

XBM0M Error creating instance of authentication scheme class <className>.

XBM0N JDBC Driver registration with java.sql.DriverManager failed. See next
exception for details.

XBM0P Service provider is read-only. Operation not permitted.

XBM0Q File <fileName> not found. Please make sure that backup copy is the correct
one and it is not corrupted.

XBM0R Unable to remove File <fileName>.

XBM0S Unable to rename file '<fileName>' to '<fileName>'

XBM0T Ambiguous sub-protocol for database name <databaseName>.

XBM0U No class was registered for identifier <identifierName>.

XBM0V An exception was thrown while loading class <identifierName> registered for
identifier <className>.

XBM0W An exception was thrown while creating an instance of class
<identifierName> registered for identifier <className>.

XBM0X Supplied territory description '<value>' is invalid, expecting ln[_CO[_variant]]
ln=lower-case two-letter ISO-639 language code, CO=upper-case two-letter
ISO-3166 country codes, see java.util.Locale.

XBM03 Supplied value '<value>' for collation attribute is invalid, expecting
UCS_BASIC or TERRITORY_BASED.

XBM0Y Backup database directory <directoryName> not found. Please make sure
that the specified backup path is right.

XBM0Z Unable to copy file '<fileName>' to '<fileName>'. Please make sure that there
is enough space and permissions are correct.

Table 62. Class XCL: Execution exceptions

SQLSTATE Message Text

XCL01 Result set does not return rows. Operation <operationName> not permitted.

XCL05 Activation closed, operation <operationName> not permitted.

XCL07 Cursor '<cursorName>' is closed. Verify that autocommit is OFF.

XCL08 Cursor '<cursorName>' is not on a row.

Java DB Reference Manual

211

SQLSTATE Message Text

XCL09 An Activation was passed to the '<methodName>' method that does not
match the PreparedStatement.

XCL10 A PreparedStatement has been recompiled and the parameters have
changed. If you are using JDBC you must prepare the statement again.

XCL12 An attempt was made to put a data value of type '<datatypeName>' into a
data value of type '<datatypeName>'.

XCL13 The parameter position '<parameterPosition>' is out of range. The number of
parameters for this prepared statement is '<number>'.

XCL14 The column position '<columnPosition>' is out of range. The number of
columns for this ResultSet is '<number>'.

XCL15 A ClassCastException occurred when calling the compareTo() method on an
object '<object>'. The parameter to compareTo() is of class '<className>'.

XCL16 ResultSet not open. Operation '<operation>' not permitted. Verify that
autocommit is OFF.

XCL16 ResultSet not open. Verify that autocommit is OFF.

XCL17 Statement not allowed in this database.

XCL18 Stream of column value in result cannot be retrieved twice

XCL19 Missing row in table '<tableName>' for key '<key>'.

XCL20 Catalogs at version level '<versionNumber>' cannot be upgraded to version
level '<versionNumber>'.

XCL21 You are trying to execute a Data Definition statement (CREATE, DROP,
or ALTER) while preparing a different statement. This is not allowed. It
can happen if you execute a Data Definition statement from within a static
initializer of a Java class that is being used from within a SQL statement.

XCL22 Parameter <parameterName> cannot be registered as an OUT parameter
because it is an IN parameter.

XCL23 SQL type number '<type>' is not a supported type by registerOutParameter().

XCL24 Parameter <parameterName> appears to be an output parameter, but it
has not been so designated by registerOutParameter(). If it is not an output
parameter, then it has to be set to type <type>.

XCL25 Parameter <parameterName> cannot be registered to be of type <type>
because it maps to type <type> and they are incompatible.

XCL26 Parameter <parameterName> is not an output parameter.

XCL27 Return output parameters cannot be set.

XCL30 An IOException was thrown when reading a '<value>' from an InputStream.

XCL31 Statement closed.

XCL33 The table cannot be defined as a dependent of table <tableName> because
of delete rule restrictions. (The relationship is self-referencing and a
self-referencing relationship already exists with the SET NULL delete rule.)

XCL34 The table cannot be defined as a dependent of table <tableName> because
of delete rule restrictions. (The relationship forms a cycle of two or more
tables that cause the table to be delete-connected to itself (all other delete
rules in the cycle would be CASCADE)).

Java DB Reference Manual

212

SQLSTATE Message Text

XCL35 The table cannot be defined as a dependent of table <tableName>
because of delete rule restrictions. (The relationship causes the table to be
delete-connected to the indicated table through multiple relationships and the
delete rule of the existing relationship is SET NULL.).

XCL36 The delete rule of foreign key must be <value>. (The referential constraint is
self-referencing and an existing self-referencing constraint has the indicated
delete rule (NO ACTION, RESTRICT or CASCADE).)

XCL37 The delete rule of foreign key must be <value>. (The referential constraint is
self-referencing and the table is dependent in a relationship with a delete rule
of CASCADE.)

XCL38 the delete rule of foreign key must be <ruleName>. (The relationship would
cause the table to be delete-connected to the same table through multiple
relationships and such relationships must have the same delete rule (NO
ACTION, RESTRICT or CASCADE).)

XCL39 The delete rule of foreign key cannot be CASCADE. (A self-referencing
constraint exists with a delete rule of SET NULL, NO ACTION or
RESTRICT.)

XCL40 The delete rule of foreign key cannot be CASCADE. (The relationship would
form a cycle that would cause a table to be delete-connected to itself. One
of the existing delete rules in the cycle is not CASCADE, so this relationship
may be definable if the delete rule is not CASCADE.)

XCL41 the delete rule of foreign key can not be CASCADE. (The relationship would
cause another table to be delete-connected to the same table through
multiple paths with different delete rules or with delete rule equal to SET
NULL.)

XCL42 CASCADE

XCL43 SET NULL

XCL44 RESTRICT

XCL45 NO ACTION

XCL46 SET DEFAULT

XCL47 Use of '<value>' requires database to be upgraded from version
<versionNumber> to version <versionNumber> or later.

XCL48 TRUNCATE TABLE is not permitted on '<value>' because unique/primary
key constraints on this table are referenced by enabled foreign key
constraints from other tables.

XCL49 TRUNCATE TABLE is not permitted on '<value>' because it has an enabled
DELETE trigger (<value>).

XCL50 Upgrading the database from a previous version is not supported. The
database being accessed is at version level '<versionNumber>', this software
is at version level '<versionNumber>'.

XCL51 The requested function can not reference tables in SESSION schema.

XCL52 The statement has been cancelled or timed out.

XCL53 Stream is closed

Table 63. Class XCW: Upgrade unsupported

Java DB Reference Manual

213

SQLSTATE Message Text

XCW00 Unsupported upgrade from '<value>' to '<value>'.

Table 64. Class XCX: Internal Utility Errors

SQLSTATE Message Text

XCXA0 Invalid identifier.

XCXB0 Invalid database classpath: '<classpath>'.

XCXC0 Invalid id list.

XCXE0 You are trying to do an operation that uses the territory of the database, but
the database does not have a territory.

Table 65. Class XCY: Derby Property Exceptions

SQLSTATE Message Text

XCY00 Invalid value for property '<value>'='<value>'.

XCY02 The requested property change is not supported '<value>'='<value>'.

XCY03 Required property '<propertyName>' has not been set.

XCY04 Invalid syntax for optimizer overrides. The syntax should be --
DERBY-PROPERTIES propertyName = value [, propertyName = value]*

Table 66. Class XCZ: org.apache.derby.database.UserUtility

SQLSTATE Message Text

XCZ00 Unknown permission '<permissionName>'.

XCZ01 Unknown user '<authorizationID>'.

XCZ02 Invalid parameter '<value>'='<value>'.

Table 67. Class XD00: Dependency Manager

SQLSTATE Message Text

XD003 Unable to restore dependency from disk. DependableFinder = '<value>'.
Further information: '<value>'.

XD004 Unable to store dependencies.

Table 68. Class XIE: Import/Export Exceptions

SQLSTATE Message Text

XIE01 Connection was null.

XIE03 Data found on line <lineNumber> for column <columnName> after the stop
delimiter.

XIE04 Data file not found: <fileName>

XIE05 Data file cannot be null.

Java DB Reference Manual

214

SQLSTATE Message Text

XIE06 Entity name was null.

XIE07 Field and record separators cannot be substrings of each other.

XIE08 There is no column named: <columnName>.

XIE09 The total number of columns in the row is: <number>.

XIE0B Column '<columnName>' in the table is of type <type>, it is not supported by
the import/export feature.

XIE0D Cannot find the record separator on line <lineNumber>.

XIE0E Read endOfFile at unexpected place on line <lineNumber>.

XIE0I An IOException occurred while writing data to the file.

XIE0J A delimiter is not valid or is used more than once.

XIE0K The period was specified as a character string delimiter.

XIE0M Table '<tableName>' does not exist.

XIE0N An invalid hexadecimal string '<hexString>' detected in the import file.

XIE0P Lob data file <fileName> referenced in the import file not found.

XIE0Q Lob data file name cannot be null.

XIE0R Import error on line <lineNumber> of file <fileName>: <details>

Table 69. Class XJ: Connectivity Errors

SQLSTATE Message Text

XJ004 Database '<databaseName>' not found.

XJ008 Cannot rollback or release a savepoint when in auto-commit mode.

XJ009 Use of CallableStatement required for stored procedure call or use of output
parameters: <value>

XJ010 Cannot issue savepoint when autoCommit is on.

XJ011 Cannot pass null for savepoint name.

XJ012 '<value>' already closed.

XJ013 No ID for named savepoints.

XJ014 No name for un-named savepoints.

XJ015 Derby system shutdown.

XJ016 Method '<methodName>' not allowed on prepared statement.

XJ017 No savepoint command allowed inside the trigger code.

XJ018 Column name cannot be null.

XJ020 Object type not convertible to TYPE '<typeName>', invalid java.sql.Types
value, or object was null.

XJ021 Type is not supported.

XJ022 Unable to set stream: '<name>'.

XJ023 Input stream did not have exact amount of data as the requested length.

Java DB Reference Manual

215

SQLSTATE Message Text

XJ025 Input stream cannot have negative length.

XJ028 The URL '<urlValue>' is not properly formed.

XJ030 Cannot set AUTOCOMMIT ON when in a nested connection.

XJ040 Failed to start database '<databaseName>', see the next exception for
details.

XJ041 Failed to create database '<databaseName>', see the next exception for
details.

XJ042 '<value>' is not a valid value for property '<propertyName>'.

XJ044 '<value>' is an invalid scale.

XJ045 Invalid or (currently) unsupported isolation level, '<levelName>', passed
to Connection.setTransactionIsolation(). The currently supported
values are java.sql.Connection.TRANSACTION_SERIALIZABLE,
java.sql.Connection.TRANSACTION_REPEATABLE_READ,
java.sql.Connection.TRANSACTION_READ_COMMITTED, and
java.sql.Connection.TRANSACTION_READ_UNCOMMITTED.

XJ049 Conflicting create attributes specified.

XJ04B Batch cannot contain a command that attempts to return a result set.

XJ04C CallableStatement batch cannot contain output parameters.

XJ056 Cannot set AUTOCOMMIT ON when in an XA connection.

XJ057 Cannot commit a global transaction using the Connection, commit
processing must go thru XAResource interface.

XJ058 Cannot rollback a global transaction using the Connection, commit
processing must go thru XAResource interface.

XJ059 Cannot close a connection while a global transaction is still active.

XJ05B JDBC attribute '<attributeName>' has an invalid value '<value>', valid values
are '<value>'.

XJ05C Cannot set holdability ResultSet.HOLD_CURSORS_OVER_COMMIT for a
global transaction.

XJ061 The '<methodName>' method is only allowed on scroll cursors.

XJ062 Invalid parameter value '<value>' for ResultSet.setFetchSize(int rows).

XJ063 Invalid parameter value '<value>' for Statement.setMaxRows(int maxRows).
Parameter value must be >= 0.

XJ064 Invalid parameter value '<value>' for setFetchDirection(int direction).

XJ065 Invalid parameter value '<value>' for Statement.setFetchSize(int rows).

XJ066 Invalid parameter value '<value>' for Statement.setMaxFieldSize(int max).

XJ067 SQL text pointer is null.

XJ068 Only executeBatch and clearBatch allowed in the middle of a batch.

XJ069 No SetXXX methods allowed in case of USING execute statement.

XJ070 Negative or zero position argument '<argument>' passed in a Blob or Clob
method.

Java DB Reference Manual

216

SQLSTATE Message Text

XJ071 Negative length argument '<argument>' passed in a BLOB or CLOB method.

XJ072 Null pattern or searchStr passed in to a BLOB or CLOB position method.

XJ073 The data in this BLOB or CLOB is no longer available. The BLOB/CLOB's
transaction may be committed, or its connection is closed.

XJ074 Invalid parameter value '<value>' for Statement.setQueryTimeout(int
seconds).

XJ076 The position argument '<positionArgument>' exceeds the size of the
BLOB/CLOB.

XJ077 Got an exception when trying to read the first byte/character of the
BLOB/CLOB pattern using getBytes/getSubString.

XJ078 Offset '<value>' is either less than zero or is too large for the current
BLOB/CLOB.

XJ079 The length specified '<number>' exceeds the size of the BLOB/BLOB.

XJ080 USING execute statement passed <number> parameters rather than
<number>.

XJ081 Conflicting create/restore/recovery attributes specified.

XJ081 Invalid value '<value>' passed as parameter '<parameterName>' to method
'<methodName>'

XJ085 Stream has already been read and end-of-file reached and cannot be
re-used.

XJ086 This method cannot be invoked while the cursor is not on the insert row or if
the concurrency of this ResultSet object is CONCUR_READ_ONLY.

XJ087 Sum of position('<pos>') and length('<length>') is greater than the size of the
LOB.

XJ088 Invalid operation: wasNull() called with no data retrieved.

XJ090 Invalid parameter: calendar is null.

XJ091 Invalid argument: parameter index <indexNumber> is not an OUT or INOUT
parameter.

XJ093 Length of BLOB/CLOB, <number>, is too large. The length cannot exceed
<number>.

XJ094 This object is already closed.

XJ095 An attempt to execute a privileged action failed.

XJ096 A resource bundle could not be found in the <packageName> package for
<value>

XJ097 Cannot rollback or release a savepoint that was not created by this
connection.

XJ098 The auto-generated keys value <value> is invalid

XJ099 The Reader/Stream object does not contain length characters

XJ100 The scale supplied by the registerOutParameter method does not match with
the setter method. Possible loss of precision!

XJ102 Can not perform an insert at the current position.

Java DB Reference Manual

217

SQLSTATE Message Text

XJ103 Table name can not be null

XJ104 Shared key length is invalid: <value>.

XJ105 DES key has the wrong length, expected length <number>, got length
<number>.

XJ106 No such padding

XJ107 Bad Padding

XJ108 Illegal Block Size

XJ110 Primary table name can not be null

XJ111 Foreign table name can not be null

XJ112 Security exception encountered, see next exception for details.

XJ113 Unable to open file <fileName> : <error>

XJ114 Invalid cursor name '<cursorName>'

XJ115 Unable to open resultSet with requested holdability <value>.

XJ116 No more than <number> commands may be added to a single batch.

XJ117 Batching of queries not allowed by J2EE compliance.

XJ118 Query batch requested on a non-query statement.

XJ121 Invalid operation at current cursor position.

XJ122 No updateXXX methods were called on this row.

XJ123 This method must be called to update values in the current row or the insert
row.

XJ124 Column not updatable.

XJ125 This method should only be called on ResultSet objects that are scrollable
(type TYPE_SCROLL_INSENSITIVE).

XJ126 This method should not be called on sensitive dynamic cursors.

XJ128 Unable to unwrap for '<value>'

XJ200 Exceeded maximum number of sections <value>

XJ202 Invalid cursor name '<cursorName>'.

XJ203 Cursor name '<cursorName>' is already in use

XJ204 Unable to open result set with requested holdability <holdValue>.

XJ206 SQL text '<value>' has no tokens.

XJ207 executeQuery method can not be used for update.

XJ208 Non-atomic batch failure. The batch was submitted, but at least
one exception occurred on an individual member of the batch. Use
getNextException() to retrieve the exceptions for specific batched elements.

XJ209 The required stored procedure is not installed on the server.

XJ210 The load module name for the stored procedure on the server is not found.

XJ211 Non-recoverable chain-breaking exception occurred during batch processing.
The batch is terminated non-atomically.

Java DB Reference Manual

218

SQLSTATE Message Text

XJ212 Invalid attribute syntax: <attributeSyntax>

XJ213 The traceLevel connection property does not have a valid format for a
number.

XJ214 An IO Error occurred when calling free() on a CLOB or BLOB.

XJ215 You cannot invoke other java.sql.Clob/java.sql.Blob methods after calling
the free() method or after the Blob/Clob's transaction has been committed or
rolled back.

XJ216 The length of this BLOB/CLOB is not available yet. When a BLOB or CLOB
is accessed as a stream, the length is not available until the entire stream
has been processed.

XJ217 The locator that was supplied for this CLOB/BLOB is invalid

Table 70. Class XK: Security Exceptions

SQLSTATE Message Text

XK000 The security policy could not be reloaded: <reason>

Table 71. Class XN: Network Client Exceptions

SQLSTATE Message Text

XN001 Connection reset is not allowed when inside a unit of work.

XN008 Query processing has been terminated due to an error on the server.

XN009 Error obtaining length of BLOB/CLOB object, exception follows.

XN010 Procedure name can not be null.

XN011 Procedure name length <number> is not within the valid range of 1 to
<number>.

XN012 On <operatingSystemName> platforms, XA supports version
<versionNumber> and above, this is version <versionNumber>

XN013 Invalid scroll orientation.

XN014 Network protocol error: encountered an IOException, parameter #<value>.
Remaining data has been padded with 0x0. Message: <messageText>.

XN015 Network protocol error: the specified size of the InputStream, parameter
#<value>, is less than the actual InputStream length.

XN016 Network protocol error: encountered error in stream length verification,
parameter #<value>. Message: <messageText>.

XN017 Network protocol error: end of stream prematurely reached, parameter
#<value>. Remaining data has been padded with 0x0.

XN018 Network protocol error: the specified size of the Reader, parameter
#<value>, is less than the actual InputStream length.

XN019 Error executing a <value>, server returned <value>.

Table 72. Class XSAI: Store - access.protocol.interface

Java DB Reference Manual

219

SQLSTATE Message Text

XSAI2 The conglomerate (<value>) requested does not exist.

XSAI3 Feature not implemented.

Table 73. Class XSAM: Store - AccessManager

SQLSTATE Message Text

XSAM0 Exception encountered while trying to boot module for '<value>'.

XSAM2 There is no index or conglomerate with conglom id '<conglomID>' to drop.

XSAM3 There is no index or conglomerate with conglom id '<conglomID>'.

XSAM4 There is no sort called '<sortName>'.

XSAM5 Scan must be opened and positioned by calling next() before making other
calls.

XSAM6 Record <containerName> on page <pageNumber> in container
<recordNumber> not found.

Table 74. Class XSAS: Store - Sort

SQLSTATE Message Text

XSAS0 A scan controller interface method was called which is not appropriate for a
scan on a sort.

XSAS1 An attempt was made to fetch a row before the beginning of a sort or after
the end of a sort.

XSAS3 The type of a row inserted into a sort does not match the sort's template.

XSAS6 Could not acquire resources for sort.

Table 75. Class XSAX: Store - access.protocol.XA statement

SQLSTATE Message Text

XSAX0 XA protocol violation.

XSAX1 An attempt was made to start a global transaction with an Xid of an existing
global transaction.

Table 76. Class XSCB: Store - BTree

SQLSTATE Message Text

XSCB0 Could not create container.

XSCB1 Container <containerName> not found.

XSCB2 The required property <propertyName> not found in the property list given to
createConglomerate() for a btree secondary index.

XSCB3 Unimplemented feature.

Java DB Reference Manual

220

SQLSTATE Message Text

XSCB4 A method on a btree open scan has been called prior to positioning the scan
on the first row (i.e. no next() call has been made yet). The current state of
the scan is (<value>).

XSCB5 During logical undo of a btree insert or delete the row could not be found in
the tree.

XSCB6 Limitation: Record of a btree secondary index cannot be updated
or inserted due to lack of space on the page. Use the parameters
derby.storage.pageSize and/or derby.storage.pageReservedSpace to work
around this limitation.

XSCB7 An internal error was encountered during a btree scan - current_rh is null =
<value>, position key is null = <value>.

XSCB8 The btree conglomerate <value> is closed.

XSCB9 Reserved for testing.

Table 77. Class XSCG0: Conglomerate

SQLSTATE Message Text

XSCG0 Could not create a template.

Table 78. Class XSCH: Heap

SQLSTATE Message Text

XSCH0 Could not create container.

XSCH1 Container <containerName> not found.

XSCH4 Conglomerate could not be created.

XSCH5 In a base table there was a mismatch between the requested column
number <number> and the maximum number of columns <number>.

XSCH6 The heap container with container id <containerID> is closed.

XSCH7 The scan is not positioned.

XSCH8 The feature is not implemented.

Table 79. Class XSDA: RawStore - Data.Generic statement

SQLSTATE Message Text

XSDA1 An attempt was made to access an out of range slot on a page

XSDA2 An attempt was made to update a deleted record

XSDA3 Limitation: Record cannot be updated or inserted due to lack of space
on the page. Use the parameters derby.storage.pageSize and/or
derby.storage.pageReservedSpace to work around this limitation.

XSDA4 An unexpected exception was thrown

XSDA5 An attempt was made to undelete a record that is not deleted

XSDA6 Column <columnName> of row is null, it needs to be set to point to an object.

Java DB Reference Manual

221

SQLSTATE Message Text

XSDA7 Restore of a serializable or SQLData object of class <className>,
attempted to read more data than was originally stored

XSDA8 Exception during restore of a serializable or SQLData object of class
<className>

XSDA9 Class not found during restore of a serializable or SQLData object of class
<className>

XSDAA Illegal time stamp <value>, either time stamp is from a different page or of
incompatible implementation

XSDAB cannot set a null time stamp

XSDAC Attempt to move either rows or pages from one container to another.

XSDAD Attempt to move zero rows from one page to another.

XSDAE Can only make a record handle for special record handle id.

XSDAF Using special record handle as if it were a normal record handle.

XSDAG The allocation nested top transaction cannot open the container.

XSDAI Page <page> being removed is already locked for deallocation.

XSDAJ Exception during write of a serializable or SQLData object

XSDAK Wrong page is gotten for record handle <value>.

XSDAL Record handle <value> unexpectedly points to overflow page.

XSDAM Exception during restore of a SQLData object of class <className>. The
specified class cannot be instantiated.

XSDAN Exception during restore of a SQLData object of class <className>. The
specified class encountered an illegal access exception.

Table 80. Class XSDB: RawStore - Data.Generic transaction

SQLSTATE Message Text

XSDB0 Unexpected exception on in-memory page <page>

XSDB1 Unknown page format at page <page>

XSDB2 Unknown container format at container <containerName> : <value>

XSDB3 Container information cannot change once written: was <value>, now
<value>

XSDB4 Page <page> is at version <versionNumber>, the log file contains change
version <versionNumber>, either there are log records of this page missing,
or this page did not get written out to disk properly.

XSDB5 Log has change record on page <page>, which is beyond the end of the
container.

XSDB6 Another instance of Derby may have already booted the database
<databaseName>.

XSDB7 WARNING: Derby (instance <value>) is attempting to boot the database
<databaseName> even though Derby (instance <value>) may still be active.
Only one instance of Derby should boot a database at a time. Severe and
non-recoverable corruption can result and may have already occurred.

Java DB Reference Manual

222

SQLSTATE Message Text

XSDB8 WARNING: Derby (instance <value>) is attempting to boot the
database <databaseName> even though Derby (instance <value>)
may still be active. Only one instance of Derby should boot a database
at a time. Severe and non-recoverable corruption can result if 2
instances of Derby boot on the same database at the same time. The
db2j.database.forceDatabaseLock=true property has been set, so the
database will not boot until the db.lck is no longer present. Normally this
file is removed when the first instance of Derby to boot on the database
exits, but it may be left behind in some shutdowns. It will be necessary to
remove the file by hand in that case. It is important to verify that no other VM
is accessing the database before deleting the db.lck file by hand.

XSDB9 Stream container <containerName> is corrupt.

XSDBA Attempt to allocate object <object> failed.

Table 81. Class XSDF: RawStore - Data.Filesystem statement

SQLSTATE Message Text

XSDF0 Could not create file <fileName> as it already exists.

XSDF1 Exception during creation of file <fileName> for container

XSDF2 Exception during creation of file <fileName> for container, file could not be
removed. The exception was: <value>.

XSDF3 Cannot create segment <segmentName>.

XSDF4 Exception during remove of file <fileName> for dropped container, file could
not be removed <value>.

XSDF6 Cannot find the allocation page <page>.

XSDF7 Newly created page failed to be latched <value>

XSDF8 Cannot find page <page> to reuse.

XSDFB Operation not supported by a read only database

XSDFD Different page image read on 2 I/Os on Page <page>, first image has
incorrect checksum, second image has correct checksum. Page images
follows: <value><value>

XSDFF The requested operation failed due to an unexpected exception.

XSDFH Cannot backup the database, got an I/O Exception while writing to the
backup container file <fileName>.

XSDFI Error encountered while trying to write data to disk during database recovery.
Check that the database disk is not full. If it is then delete unnecessary files,
and retry connecting to the database. It is also possible that the file system
is read only, or the disk has failed, or some other problem with the media.
System encountered error while processing page <page>.

Table 82. Class XSDG: RawStore - Data.Filesystem database

SQLSTATE Message Text

XSDG0 Page <page> could not be read from disk.

Java DB Reference Manual

223

SQLSTATE Message Text

XSDG1 Page <page> could not be written to disk, please check if disk is full.

XSDG2 Invalid checksum on Page <page>, expected=<value>, on-disk
version=<value>, page dump follows: <value>

XSDG3 Meta-data for Container <containerName> could not be accessed

XSDG5 Database is not in create mode when createFinished is called.

XSDG6 Data segment directory not found in <value> backup during restore. Please
make sure that backup copy is the right one and it is not corrupted.

XSDG7 Directory <directoryName> could not be removed during restore. Please
make sure that permissions are correct.

XSDG8 Unable to copy directory '<directoryName>' to '<value>' during restore.
Please make sure that there is enough space and permissions are correct.

Table 83. Class XSLA: RawStore - Log.Generic database exceptions

SQLSTATE Message Text

XSLA0 Cannot flush the log file to disk <value>.

XSLA1 Log Record has been sent to the stream, but it cannot be applied to the store
(Object <object>). This may cause recovery problems also.

XSLA2 System will shutdown, got I/O Exception while accessing log file.

XSLA3 Log Corrupted, has invalid data in the log stream.

XSLA4 Cannot write to the log, most likely the log is full. Please delete unnecessary
files. It is also possible that the file system is read only, or the disk has failed,
or some other problems with the media.

XSLA5 Cannot read log stream for some reason to rollback transaction
<transactionID>.

XSLA6 Cannot recover the database.

XSLA7 Cannot redo operation <operation> in the log.

XSLA8 Cannot rollback transaction <value>, trying to compensate <value> operation
with <value>

XSLAA The store has been marked for shutdown by an earlier exception.

XSLAB Cannot find log file <logfileName>, please make sure your logDevice
property is properly set with the correct path separator for your platform.

XSLAC Database at <value> have incompatible format with the current version of
software, it may have been created by or upgraded by a later version.

XSLAD log Record at instant <value> in log file <value> corrupted. Expected log
record length <value>, real length <logfileName>.

XSLAE Control file at <value> cannot be written or updated.

XSLAF A Read Only database was created with dirty data buffers.

XSLAH A Read Only database is being updated.

XSLAI Cannot log the checkpoint log record

Java DB Reference Manual

224

SQLSTATE Message Text

XSLAJ The logging system has been marked to shut down due to an earlier problem
and will not allow any more operations until the system shuts down and
restarts.

XSLAK Database has exceeded largest log file number <value>.

XSLAL log record size <logfileName> exceeded the maximum allowable log file size
<value>. Error encountered in log file <value>, position <number>.

XSLAM Cannot verify database format at {1} due to IOException.

XSLAN Database at <value> has an incompatible format with the current version
of the software. The database was created by or upgraded by version
<versionNumber>.

XSLAO Recovery failed unexpected problem <value>.

XSLAP Database at <value> is at version <versionNumber>. Beta databases cannot
be upgraded,

XSLAQ cannot create log file at directory <directoryName>.

XSLAR Unable to copy log file '<logfileName>' to '<value>' during restore. Please
make sure that there is enough space and permissions are correct.

XSLAS Log directory <directoryName> not found in backup during restore. Please
make sure that backup copy is the correct one and it is not corrupted.

XSLAT The log directory '<directoryName>' exists. The directory might belong
to another database. Check that the location specified for the logDevice
attribute is correct.

Table 84. Class XSLB: RawStore - Log.Generic statement exceptions

SQLSTATE Message Text

XSLB1 Log operation <logOperation> encounters error writing itself out to the log
stream, this could be caused by an errant log operation or internal log buffer
full due to excessively large log operation.

XSLB2 Log operation <logOperation> logging excessive data, it filled up the internal
log buffer.

XSLB4 Cannot find truncationLWM <value>.

XSLB5 Illegal truncationLWM instant <value> for truncation point <value>. Legal
range is from <value> to <value>.

XSLB6 Trying to log a 0 or -ve length log Record.

XSLB8 Trying to reset a scan to <value>, beyond its limit of <value>.

XSLB9 Cannot issue any more change, log factory has been stopped.

Table 85. Class XSRS: RawStore - protocol.Interface statement

SQLSTATE Message Text

XSRS0 Cannot freeze the database after it is already frozen.

XSRS1 Cannot backup the database to <value>, which is not a directory.

XSRS4 Error renaming file (during backup) from <value> to <value>.

Java DB Reference Manual

225

SQLSTATE Message Text

XSRS5 Error copying file (during backup) from <path> to <path>.

XSRS6 Cannot create backup directory <directoryName>.

XSRS7 Backup caught unexpected exception.

XSRS8 Log Device can only be set during database creation time, it cannot be
changed on the fly.

XSRS9 Record <recordName> no longer exists

XSRSA Cannot backup the database when unlogged operations are uncommitted.
Please commit the transactions with backup blocking operations.

XSRSB Backup cannot be performed in a transaction with uncommitted unlogged
operations.

XSRSC Cannot backup the database to <directoryLocation>, it is a database
directory.

Table 86. Class XSTA2: XACT_TRANSACTION_ACTIVE

SQLSTATE Message Text

XSTA2 A transaction was already active, when attempt was made to make another
transaction active.

Table 87. Class XSTB: RawStore - Transactions.Basic system

SQLSTATE Message Text

XSTB0 An exception was thrown during transaction abort.

XSTB2 Cannot log transaction changes, maybe trying to write to a read only
database.

XSTB3 Cannot abort transaction because the log manager is null, probably due to
an earlier error.

XSTB5 Creating database with logging disabled encountered unexpected problem.

XSTB6 Cannot substitute a transaction table with another while one is already in
use.

Table 88. Class XXXXX: No SQLSTATE

SQLSTATE Message Text

XXXXX Normal database session close.

Java DB Reference Manual

226

JDBC reference

Derby comes with a built-in JDBC driver.

That makes the JDBC API the only API for working with Derby databases. The driver is a
native protocol all-Java driver (type number four of types defined by Sun).

This section provides reference information about Derby's implementation of the JDBC
API and documents the way it conforms to the JDBC 2.0, 3.0, and 4.0 APIs.

See the Java DB Developer's Guide for task-oriented instructions on working with the
driver.

This JDBC driver implements the standard JDBC interface defined by Sun. When
invoked from an application running in the same JVM as Derby, the JDBC driver supports
connections to a Derby database in embedded mode. No network transport is required
to access the database. In client/server mode, the client application dispatches JDBC
requests to the JDBC server over a network; the server, in turn, which runs in the same
JVM as Derby, sends requests to Derby through the embedded JDBC driver.

The Derby JDBC implementation provides access to Derby databases and supplies
all the required JDBC interfaces. Unimplemented aspects of the JDBC driver return an
SQLException with a message stating "Feature not implemented" and an SQLState of
XJZZZ. These unimplemented parts are for features not supported by Derby.

Core JDBC java.sql classes, interfaces, and methods
This section details Derby's implementation of the following java.sql classes, interfaces,
and methods:

• java.sql.Driver interface
• java.sql.DriverManager.getConnection method
• java.sql.Driver.getPropertyInfo method
• java.sql.Connection interface
• java.sql.DatabaseMetaData interface
• java.sql.Statement interface
• java.sql.PreparedStatement interface
• java.sql.CallableStatement interface
• java.sql.ResultSet interface
• java.sql.ResultSetMetaData interface
• java.sql.SQLException class
• java.sql.SQLWarning class
• Mapping of java.sql.Types to SQL types

java.sql.Driver interface
The class that loads Derby's local JDBC driver is the class
org.apache.derby.jdbc.EmbeddedDriver. Listed below are some of the ways to create
instances of that class. Do not use the class directly through the java.sql.Driver interface.
Use the DriverManager class to create connections.

• If your application runs on JDK 1.6 or higher, you do not need to do any of the
following. The EmbeddedDriver will load automatically when your application asks
for its first Connection.

• Class.forName("org.apache.derby.jdbc.EmbeddedDriver")

Java DB Reference Manual

227

Our recommended manner, because it ensures that the class is loaded in all JVMs
by creating an instance at the same time.

• new org.apache.derby.jdbc.EmbeddedDriver()

Same as Class.forName("org.apache.derby.jdbc.EmbeddedDriver"), except that it
requires the class to be found when the code is compiled.

• Class c = org.apache.derby.jdbc.EmbeddedDriver.class

This is also the same as Class.forName("org.apache.derby.jdbc.EmbeddedDriver"),
except that it requires the class to be found when the code is compiled. The
pseudo-static field class evaluates to the class that is named.

• Setting the System property jdbc.drivers

To set a System property, you alter the invocation command line or the system
properties within your application. It is not possible to alter system properties within
an applet.

java -Djdbc.drivers=org.apache.derby.jdbc.EmbeddedDriver
 applicationClass

The actual driver that gets registered in the DriverManager to handle the jdbc:derby:
protocol is not the class org.apache.derby.jdbc.EmbeddedDriver; that class simply
detects the type of Derby driver needed and then causes the appropriate Derby driver to
be loaded.

The only supported way to connect to a Derby system through the jdbc:derby:
protocol is using the DriverManager to obtain a driver (java.sql.Driver) or connection
(java.sql.Connection) through the getDriver and getConnection method calls.

java.sql.Driver.getPropertyInfo method

To get the DriverPropertyInfo object, request the JDBC driver from the driver manager:

java.sql.DriverManager.getDriver("jdbc:derby:").
 getPropertyInfo(URL, Prop)

Do not request it from org.apache.derby.jdbc.EmbeddedDriver, which is only an
intermediary class that loads the actual driver.

This method might return a DriverPropertyInfo object. In a Derby system, it consists
of an array of database connection URL attributes. The most useful attribute is
databaseName=nameofDatabase, which means that the object consists of a list of
booted databases in the current system.

For example, if a Derby system has the databases toursDB and flightsDB in its
system directory, all the databases in the system are set to boot automatically, and a
user has also connected to a database A:/dbs/tours94, the array returned from
getPropertyInfo contains one object corresponding to the databaseName attribute. The
choices field of the DriverPropertyInfo object will contain an array of three Strings with the
values toursDB, flightsDB, and A:/dbs/tours94. Note that this object is returned only if
the proposed connection objects do not already include a database name (in any form) or
include the shutdown attribute with the value true.

For more information about java.sql.Driver.getPropertyInfo, see "Offering connection
choices to the user" in the Java DB Developer's Guide.

java.sql.DriverManager.getConnection method
A Java application using the JDBC API establishes a connection to a database by
obtaining a Connection object. The standard way to obtain a Connection object is to call

Java DB Reference Manual

228

the method DriverManager.getConnection, which takes a String containing a database
connection URL. A JDBC database connection URL (uniform resource locator) provides
a way of identifying a database.

DriverManager.getConnection can take one argument besides a database connection
URL, a Properties object. You can use the Properties object to set database connection
URL attributes.

You can also supply strings representing user names and passwords. When they
are supplied, Derby checks whether they are valid for the current system if user
authentication is enabled. User names are passed to Derby as authorization identifiers,
which are used to determine whether the user is authorized for access to the database
and for determining the default schema. When the connection is established, if no user
is supplied, Derby sets the default user to APP, which Derby uses to name the default
schema. If a user is supplied, the default schema is the same as the user name.

Derby database connection URL syntax

A Derby database connection URL consists of the basic database connection URL
followed by an optional subsubprotocol and optional attributes.

This section provides reference information only. For a more complete description,
including examples, see "Connecting to Databases" in Chapter 1 of the Java DB
Developer's Guide.

Syntax of database connection URLs for applications with embedded databases

For applications with embedded databases, the syntax of the database connection URL
is

jdbc:derby: [subsubprotocol:][databasename][;attributes]*

• jdbc:derby:

In JDBC lingo, derby is the subprotocol for connecting to a Derby database. The
subprotocol is always derby and does not vary.

• subsubprotocol:

subsubprotocol, which is not typically specified, specifies where Derby looks for
a database: in a directory, in a classpath, or in a jar file. It is used only in rare
instances, usually for read-only databases. subsubprotocol is one of the following:

• directory
• classpath: Databases are treated as read-only databases, and all

databaseNames must begin with at least a slash, because you specify them
"relative" to the classpath directory or archive. (You do not have to specify
classpath as the subsubprotocol; it is implied.)

• jar Databases are treated as read-only databases.
jar: requires an additional element immediately before the databaseName:

(pathToArchive)

pathToArchive is the path to the jar or zip file that holds the database and includes
the name of the jar or zip file.

See the Java DB Developer's Guide for examples of database connection URLs for
read-only databases.

• databaseName

Specify the databaseName to connect to an existing database or a new one.

Java DB Reference Manual

229

You can specify the database name alone, or with a relative or absolute path. See
"Standard Connections-Connecting to Databases in the File System" in Chapter 1
of the Java DB Developer's Guide.

• attributes

Specify 0 or more database connection URL attributes as detailed in Attributes of
the Derby database connection URL.

Additional SQL syntax
Derby also supports the following SQL standard syntax to obtain a reference to the
current connection in a database-side JDBC procedure or method:

jdbc:default:connection

Attributes of the Derby database connection URL

You can supply an optional list of attributes to a database connection URL. Derby
translates these attributes into properties, so you can also set attributes in a Properties
object passed to DriverManager.getConnection. (You cannot set those attributes
as system properties, only in an object passed to the DriverManager.getConnection
method.)

These attributes are specific to Derby and are listed in Setting attributes for the database
connection URL.

Attribute name/value pairs are converted into properties and added to the properties
provided in the connection call. If no properties are provided in the connection call, a
properties set is created that contains only the properties obtained from the database
connection URL.

import java.util.Properties;

Connection conn = DriverManager.getConnection(
 "jdbc:derby:sampleDB;create=true");

/* setting an attribute in a Properties object */
Properties myProps = new Properties();
myProps.put("create", "true");
Connection conn = DriverManager.getConnection(
 "jdbc:derby:sampleDB", myProps);

/* passing user name and password */
Connection conn = DriverManager.getConnection(
 "jdbc:derby:sampleDB", "dba", "password");

Note: Attributes are not parsed for correctness. If you pass in an incorrect attribute
or corresponding value, it is simply ignored. (Derby does provide a tool for parsing the
correctness of attributes. For more information, see the Java DB Tools and Utilities
Guide.)

java.sql.Connection interface
A DerbyConnection object is not garbage-collected until all other JDBC objects created
from that connection are explicitly closed or are themselves garbage-collected. Once the
connection is closed, no further JDBC requests can be made against objects created
from the connection. Do not explicitly close the Connection object until you no longer
need it for executing statements.

A session-severity or higher exception causes the connection to close and all other JDBC
objects against it to be closed. System-severity exceptions cause the Derby system to

Java DB Reference Manual

230

shut down, which not only closes the connection but means that no new connections
should be created in the current JVM.

java.sql.Connection.setTransactionIsolation method

java.sql.Connection.TRANSACTION_SERIALIZABLE,
java.sql.Connection.TRANSACTION_REPEATABLE_READ,
java.sql.Connection.TRANSACTION_READ_COMMITTED, and
java.sql.Connection.TRANSACTION_READ_UNCOMMITTED transaction isolations are
available from a Derby database.

TRANSACTION_READ_COMMITTED is the default isolation level.

Changing the current isolation for the connection with setTransactionIsolation commits
the current transaction and begins a new transaction. For more details about transaction
isolation, see "Locking, concurrency, and isolation" in the Java DB Developer's Guide.

java.sql.Connection.setReadOnly method

java.sql.Connection.setReadOnly is supported.

See the section "Differences using the Connection.setReadOnly method" in the Java DB
Server and Administration Guide for more information.

java.sql.Connection.isReadOnly method

If you connect to a read-only database, the appropriate isReadOnly DatabaseMetaData
value is returned. For example, Connections set to read-only using the setReadOnly
method, Connections for which the user has been defined as a readOnlyAccess user
(with one of the Derby properties), and Connections to databases on read-only media
return true.

Connection functionality not supported

Derby does not use catalog names. In addition, the following optional methods raise
"Feature not supported" exceptions:

• createArrayOf(java.lang.String, java.lang.Object[])
• createNClob()
• createSQLXML()
• createStruct(java.lang.String, java.lang.Object[])
• getTypeMap()
• prepareStatement(java.lang.String, int[])
• prepareStatement(java.lang.String, java.lang.String[])
• setTypeMap(java.util.Map)

java.sql.DatabaseMetaData interface
This section discusses java.sql.DatabaseMetaData functionality in Derby.

DatabaseMetaData result sets

DatabaseMetaData result sets do not close the result sets of other statements, even
when auto-commit is set to true.

DatabaseMetaData result sets are closed if a user performs any other action on a JDBC
object that causes an automatic commit to occur. If you need the DatabaseMetaData

Java DB Reference Manual

231

result sets to be accessible while executing other actions that would cause automatic
commits, turn off auto-commit with setAutoCommit(false).

java.sql.DatabaseMetaData.getProcedureColumns method

Derby supports Java procedures. Derby allows you to call Java procedures within SQL
statements. Derby returns information about the parameters in the getProcedureColumns
call. If the corresponding Java method is overloaded, it returns information about each
signature separately. Derby returns information for all Java procedures defined by
CREATE PROCEDURE.

getProcedureColumns returns a ResultSet. Each row describes a single parameter or
return value.

Parameters to getProcedureColumns

The JDBC API defines the following parameters for this method call:

• catalog

always use null for this parameter in Derby.
• schemaPattern

Java procedures have a schema.
• procedureNamePattern

a String object representing a procedure name pattern.
• column-Name-Pattern

a String object representing the name pattern of the parameter names or return
value names. Java procedures have parameter names matching those defined in
the CREATE PROCEDURE statement. Use "%" to find all parameter names.

Columns in the ResultSet returned by getProcedureColumns

Columns in the ResultSet returned by getProcedureColumns are as described by the
API. Further details for some specific columns:

• PROCEDURE_CAT

always "null" in Derby
• PROCEDURE_SCHEM

schema for a Java procedure
• PROCEDURE_NAME

the name of the procedure
• COLUMN_NAME

the name of the parameter (see column-Name-Pattern)
• COLUMN_TYPE

short indicating what the row describes. Always is
DatabaseMetaData.procedureColumnIn for method parameters, unless the
parameter is an array. If so, it is DatabaseMetaData.procedureColumnInOut. It
always returns DatabaseMetaData.procedureColumnReturn for return values.

• TYPE_NAME

Derby-specific name for the type.
• NULLABLE

always returns DatabaseMetaData.procedureNoNulls for primitive parameters and
DatabaseMetaData.procedureNullable for object parameters

Java DB Reference Manual

232

• REMARKS

a String describing the java type of the method parameter
• COLUMN_DEF

a String describing the default value for the column (may be null)
• SQL_DATA_TYPE

reserved by JDBC spec for future use
• SQL_DATETIME_SUB

reserved by JDBC spec for future use
• CHAR_OCTET_LENGTH

the maximum length of binary and character based columns (or any other datatype
the returned value is a NULL)

• ORDINAL_POSITION

the ordinal position, starting from 1, for the input and output parameters for a
procedure.

• IS_NULLABLE

a String describing the parameter's nullability (YES means parameter can include
NULLs, NO means it can't)

• SPECIFIC_NAME

the name which uniquely identifies this procedure within its schema
• METHOD_ID

a Derby-specific column.
• PARAMETER_ID

a Derby-specific column.

java.sql.DatabaseMetaData.getBestRowIdentifier method

The java.sql.DatabaseMetaData.getBestRowIdentifier method looks for identifiers in a
specific order. This order might not return a unique row.

The java.sql.DatabaseMetaData.getBestRowIdentifier method looks for identifiers in the
following order:

• A primary key on the table
• A unique constraint or unique index on the table
• All of the columns in the table

Note: If the java.sql.DatabaseMetaData.getBestRowIdentifier method does not find a
primary key, unique constraint, or unique index, the method must look for identifiers in all
of the columns in the table. When the method looks for identifiers this way, the method
will always find a set of columns that identify a row. However, a unique row might not be
identified if there are duplicate rows in the table.

java.sql.Statement interface
Derby does not implement the JDBC 1.2 setEscapeProcessing method of
java.sql.Statement. In addition, the following optional methods raise "Feature not
supported" exceptions:

• cancel()
• execute(java.lang.String, int[])
• execute(java.lang.String, String[])
• executeUpdate(java.lang.String, int[])
• executeUpdate(java.lang.String, String[])

Java DB Reference Manual

233

ResultSet objects

An error that occurs when a SELECT statement is first executed prevents a ResultSet
object from being opened on it. The same error does not close the ResultSet if it occurs
after the ResultSet has been opened.

For example, a divide-by-zero error that happens while the executeQuery method is
called on a java.sql.Statement or java.sql.PreparedStatement throws an exception and
returns no result set at all, while if the same error happens while the next method is
called on a ResultSet object, it does not cause the result set to be closed.

Errors can happen when a ResultSet is first being created if the system partially executes
the query before the first row is fetched. This can happen on any query that uses more
than one table and on queries that use aggregates, GROUP BY, ORDER BY, DISTINCT,
INTERSECT, EXCEPT, or UNION.

Closing a Statement causes all open ResultSet objects on that statement to be closed as
well.

The cursor name for the cursor of a ResultSet can be set before the statement is
executed. However, once it is executed, the cursor name cannot be altered.

java.sql.CallableStatement interface
Derby supports all the JDBC 1.2 methods of CallableStatement:

• getBoolean()
• getByte()
• getBytes()
• getDate()
• getDouble()
• getFloat()
• getInt()
• getLong()
• getObject()
• getShort()
• getString()
• getTime()
• getTimestamp()
• registerOutParamter()
• wasNull()

CallableStatements and OUT Parameters

Derby supports OUT parameters and CALL statements that return values, as in the
following example:

CallableStatement cs = conn.prepareCall(
 "? = CALL getDriverType(cast (? as INT))"
cs.registerOutParameter(1, Types.INTEGER);
cs.setInt(2, 35);
cs.executeUpdate();

Note: Using a CALL statement with a procedure that returns a value is only supported
with the ? = syntax.

Register the output type of the parameter before executing the call.

Java DB Reference Manual

234

CallableStatements and INOUT Parameters

INOUT parameters map to an array of the parameter type in Java. (The method must
take an array as its parameter.) This conforms to the recommendations of the SQL
standard.

Given the following example:

CallableStatement call = conn.prepareCall(
 "{CALL doubleMyInt(?)}");
// for inout parameters, it is good practice to
// register the outparameter before setting the input value
call.registerOutParameter(1, Types.INTEGER);
call.setInt(1,10);
call.execute();
int retval = call.getInt(1);

The method doubleIt should take a one-dimensional array of ints. Here is sample
source code for that method:

public static void doubleMyInt(int[] i) {
 i[0] *=2;
 /* Derby returns the first element of the array.*/
}

Note: The return value is not wrapped in an array even though the parameter to the
method is.
Table 89. INOUT Parameter Type Correspondence

JDBC Type
Array Type for
Method Parameter Value and Return Type

BIGINT long[] long

BINARY byte[][] byte[]

BIT boolean[] boolean

DATE java.sql.Date[] java.sql.Date

DOUBLE double[] double

FLOAT double[] double

INTEGER int[] int

LONGVARBINARY byte[][] byte[]

REAL float[] float

SMALLINT short[] short

TIME java.sql.Time[] java.sql.Time

TIMESTAMP java.sql.Timestamp[] java.sql.Timestamp

VARBINARY byte[][] byte[]

OTHER yourType[] yourType

JAVA_OBJECT (only valid in
Java2/JDBC 2.0 environments)

yourType[] yourType

Register the output type of the parameter before executing the call. For INOUT
parameters, it is good practice to register the output parameter before setting its input
value.

Java DB Reference Manual

235

java.sql.SQLException class
Derby supplies values for the getMessage(), getSQLState(), and getErrorCode() calls
of SQLExceptions. In addition, Derby sometimes returns multiple SQLExceptions using
the nextException chain. The first exception is always the most severe exception,
with SQL-92 Standard exceptions preceding those that are specific to Derby. For
information on processing SQLExceptions, see "Working with Derby SQLExceptions in
an application" in the Java DB Developer's Guide.

java.sql.PreparedStatement interface
Derby provides all the required JDBC 1.2 type conversions and additionally allows use
of the individual setXXX methods for each type as if a setObject(Value, JDBCTypeCode)
invocation were made.

This means that setString can be used for any built-in target type.

The setCursorName method can be used on a PreparedStatement prior to an execute
request to control the cursor name used when the cursor is created.

Prepared statements and streaming columns

setXXXStream requests stream data between the application and the database.

JDBC allows an IN parameter to be set to a Java input stream for passing in large
amounts of data in smaller chunks. When the statement is executed, the JDBC driver
makes repeated calls to this input stream, reading its contents and transmitting those
contents as the parameter data.

Derby supports the three types of streams that JDBC 1.2 provides. These three streams
are:

• setBinaryStream

for streams containing uninterpreted bytes
• setAsciiStream

for streams containing ASCII characters
• setUnicodeStream

for streams containing Unicode characters

JDBC 2.0 and JDBC 3.0 require that you specify the length of the stream and Derby
enforces this requirement if your application runs on JDK 1.5 or earlier. If your application
runs on JDK 1.6, then Derby exposes a JDBC 4.0 implementation, which lets you use
the streaming interfaces without having to specify the stream length. The stream object
passed to these three methods can be either a standard Java stream object or the user's
own subclass that implements the standard java.io.InputStream interface.

According to the JDBC standard, streams can be stored only in columns of the data types
shown in Streamable JDBC Data Types. Streams cannot be stored in columns of the
other built-in data types or of user-defined data types.
Table 90. Streamable JDBC Data Types

Column Values Type
Correspondent

AsciiStream UnicodeStream BinaryStream

CLOB java.sql.Clob x x '

CHAR ' x x '

Java DB Reference Manual

236

Column Values Type
Correspondent

AsciiStream UnicodeStream BinaryStream

VARCHAR ' x x '

LONGVARCHAR ' X X '

BINARY ' x x x

BLOB java.sql.Blob x x x

VARBINARY ' x x x

LONGVARBINARY ' x x X

A large X indicates the preferred target data type for the type of stream. (See Mapping of
java.sql.Types to SQL Types.)
Note: If the stream is stored in a column of a type other than LONG VARCHAR or LONG
VARCHAR FOR BIT DATA, the entire stream must be able to fit into memory at one time.
Streams stored in LONG VARCHAR and LONG VARCHAR FOR BIT DATA columns do
not have this limitation.

The following example shows how a user can store a streamed java.io.File in a LONG
VARCHAR column:

Statement s = conn.createStatement();
s.executeUpdate("CREATE TABLE atable (a INT, b LONG VARCHAR)");
conn.commit();
java.io.File file = new java.io.File("derby.txt");
int fileLength = (int) file.length();
// first, create an input stream
java.io.InputStream fin = new java.io.FileInputStream(file);
PreparedStatement ps = conn.prepareStatement(
 "INSERT INTO atable VALUES (?, ?)");
ps.setInt(1, 1);
// set the value of the input parameter to the input stream
ps.setAsciiStream(2, fin, fileLength);
ps.execute();
conn.commit();

java.sql.ResultSet interface
A positioned update or delete issued against a cursor being accessed through a
ResultSet object modifies or deletes the current row of the ResultSet object.

Some intermediate protocols might pre-fetch rows. This causes positioned updates and
deletes to operate against the row the underlying cursor is on, and not the current row of
the ResultSet.

Derby provides all the required JDBC 1.2 type conversions of the getXXX methods.

JDBC does not define the sort of rounding to use for ResultSet.getBigDecimal. Derby
uses java.math.BigDecimal.ROUND_HALF_DOWN.

ResultSets and streaming columns

If the underlying object is itself an OutputStream class, getBinaryStream returns the
object directly.

To get a field from the ResultSet using streaming columns, you can use the
getXXXStream methods if the type supports it. See Streamable JDBC Data Types for
a list of types that support the various streams. (See also Mapping of java.sql.Types to
SQL Types.)

Java DB Reference Manual

237

You can retrieve data from one of the supported data type columns as a stream, whether
or not it was stored as a stream.

The following example shows how a user can retrieve a LONG VARCHAR column as a
stream:

// retrieve data as a stream
ResultSet rs = s.executeQuery("SELECT b FROM atable");
while (rs.next()) {
 // use a java.io.InputStream to get the data
 java.io.InputStream ip = rs.getAsciiStream(1);
 // process the stream--this is just a generic way to// print the data
 int c;
 int columnSize = 0;
 byte[] buff = new byte[128];
 for (;;) {
 int size = ip.read(buff);
 if (size == -1)
 break;
 columnSize += size;
 String chunk = new String(buff, 0, size);
 System.out.print(chunk);
 }
}
rs.close();
s.close();
conn.commit();

java.sql.ResultSetMetaData interface
Derby does not track the source or updatability of columns in ResultSets, and so always
returns the following constants for the following methods:

Method Name Value

isDefinitelyWritable false

isReadOnly false

isWritable false

java.sql.SQLWarning class
Derby can generate a warning in certain circumstances. A warning is generated if, for
example, you try to connect to a database with the create attribute set to true if the
database already exists. Aggregates like sum() also raise a warning if NULL values are
encountered during the evaluation.

All other informational messages are written to the Derby system's derby.log file.

java.sql.SQLXML interface
In JDBC 4.0, java.sql.SQLXML is the mapping for the SQL XML data type. However,
Derby defines the XML data type and operators only in the SQL layer. There is no
JDBC-side support for the XML data type and operators

You cannot instantiate a java.sql.SQLXML object in Derby, or bind directly into an XML
value or retrieve an XML value directly from a result set. You must bind and retrieve the
XML data as Java strings or character streams by explicitly specifying the XML operators,
XMLPARSE and XMLSERIALIZE, as part of your SQL queries.

Java DB Reference Manual

238

Additionally, Derby does not provide JDBC metatadata support for the XML data type.

Mapping of java.sql.Types to SQL types
In Derby, the java.sql.Types are mapped to SQL data types

The following table shows the mapping of java.sql.Types to SQL types.
Table 91. Mapping of java.sql.Types to SQL Types

java.sql.Types SQL Types

BIGINT BIGINT

BINARY CHAR FOR BIT DATA

BIT1 CHAR FOR BIT DATA

BLOB BLOB (JDBC 2.0 and up)

CHAR CHAR

CLOB CLOB (JDBC 2.0 and up)

DATE DATE

DECIMAL DECIMAL

DOUBLE DOUBLE PRECISION

FLOAT DOUBLE PRECISION2

INTEGER INTEGER

LONGVARBINARY LONG VARCHAR FOR BIT DATA

LONGVARCHAR LONG VARCHAR

NULL Not a data type; always a value of a particular type

NUMERIC DECIMAL

REAL REAL

SMALLINT SMALLINT

SQLXML3 XML

TIME TIME

TIMESTAMP TIMESTAMP

VARBINARY VARCHAR FOR BIT DATA

VARCHAR VARCHAR

Notes:
1. BIT is only valid in JDBC 2.0 and earlier environments.
2. Values can be passed in using the FLOAT type code; however, these are stored as

DOUBLE PRECISION values, and so always have the type code DOUBLE when
retrieved.

3. SQLXML is only valid in JDBC 4.0 and later environments. SQLXML corresponds
to the SQL type XML in Derby. However, Derby does not recognize the
java.sql.Types.SQLXML data type and does not support any JDBC-side operations
for the XML data type. Support for XML and the related operators is implemented
only at the SQL layer. See XML data types for more.

Java DB Reference Manual

239

Mapping of java.sql.Blob and java.sql.Clob interfaces

In JDBC 2.0, java.sql.Blob is the mapping for the SQL BLOB (binary large object) type;
java.sql.Clob is the mapping for the SQL CLOB (character large object) type.

java.sql.Blob and java.sql.Clob provide a logical pointer to the large object rather than
a complete copy of the objects. Derby processes only one data page into memory at
a time. The whole BLOB does not need to be processed and stored in memory just to
access the first few bytes of the LOB object

Derby now supports the built-in BLOB or CLOB data types. Derby also provides the
following support for these data types:

• BLOB FeaturesDerby supports the java.sql.Blob interface and the BLOB-related
methods listed in java.sql.PreparedStatement interface: supported JDBC 2.0
methods and java.sql.ResultSet interface: supported JDBC 2.0 methods. The
getBlob methods of CallableStatement are not implemented.

• CLOB FeaturesDerby supports the java.sql.Clob interface and the CLOB-related
methods listed in java.sql.PreparedStatement interface: supported JDBC 2.0
methods and java.sql.ResultSet interface: supported JDBC 2.0 methods. The
getClob methods of CallableStatement procedures are not implemented.

To use the java.sql.Blob and java.sql.Clob features:
• Use the SQL BLOB type for storage; LONG VARCHAR FOR BIT DATA, BINARY,

and VARCHAR FOR BIT DATA types also work.
• Use the SQL CLOB type for storage; LONG VARCHAR, CHAR, and VARCHAR

types also work.
• Use the getBlob or getClob methods on the java.sql.ResultSet interface to retrieve a

BLOB or CLOB handle to the underlying data.
• You cannot call static methods on any LOB-columns.

In addition, casting between strings and BLOBs is not recommended because casting is
platform and database dependent.

Derby uses unicode strings (2 byte characters), while other database products may use
ASCII characters (1 byte per character). If various codepages are used, each character
might need several bytes. A larger BLOB type might be necessary to accommodate a
normal string in Derby. You should use CLOB types for storing strings.

Restrictions on BLOB, CLOB, (LOB-types):
• LOB-types cannot be compared for equality(=) and non-equality(!=, <>.
• LOB-typed values are not order-able, so <, <=, >, >= tests are not supported.
• LOB-types cannot be used in indices or as primary key columns.
• DISTINCT, GROUP BY, ORDER BY clauses are also prohibited on LOB-types.
• LOB-types cannot be involved in implicit casting as other base-types.

Derby implements all of the methods for these JDBC 2.0 interfaces except for the set and
get methods in CallableStatement interface.

Recommendations: Because the lifespan of a java.sql.Blob or java.sql.Clob ends when
the transaction commits, turn off auto-commit with the java.sql.Blob or java.sql.Clob
features.

Table 92. JDBC 2.0 java.sql.Blob Methods Supported

Returns Signature Implementation Notes

InputStreamgetBinaryStream() '

byte[] getBytes(long pos, int
length)

Exceptions are raised if pos < 1, if pos is larger
than the length of the , or if length <= 0.

Java DB Reference Manual

240

Returns Signature Implementation Notes

long length() '

long position(byte[] pattern,
long start)

Exceptions are raised if pattern == null, if start
< 1, or if pattern is an array of length 0.

long position(Blob pattern, long
start)

Exceptions are raised if pattern == null, if start
< 1, if pattern has length 0, or if an exception
is thrown when trying to read the first byte of
pattern.

Table 93. JDBC 2.0 java.sql.Clob Methods Supported

Returns Signature Implementation Notes

InputStreamgetAsciiStream() '

Reader getCharacterStream() '

String getSubString(long pos, int
length)

Exceptions are raised if pos < 1, if pos
is larger than the length of the Clob, or if
length <= 0.

long length() '

long position(Clob searchstr, long
start)

Exceptions are raised if searchStr == null
or start < 1, if searchStr has length 0, or if
an exception is thrown when trying to read
the first char of searchStr.

long position(String searchstr, long
start)

Exceptions are raised if searchStr == null
or start < 1, or if the pattern is an empty
string.

Notes on mapping of java.sql.Blob and java.sql.Clob interfaces

The usual Derby locking mechanisms (shared locks) prevent other transactions from
updating or deleting the database item to which the java.sql.Blob or java.sql.Clob
object is a pointer. However, in some cases, Derby's instantaneous lock mechanisms
could allow a period of time in which the column underlying the java.sql.Blob
or java.sql.Clob is unprotected. A subsequent call to getBlob/getClob, or to a
java.sql.Blob/java.sql.Clobmethod, could cause undefined behavior.

Furthermore, there is nothing to prevent the transaction that holds the
java.sql.Blob/java.sql.Clob (as opposed to another transaction) from updating
the underlying row. (The same problem exists with the getXXXStream methods.)
Program applications to prevent updates to the underlying object while a
java.sql.Blob/java.sql.Clob is open on it; failing to do this could result in undefined
behavior.

Do not call more than one of the ResultSet getXXX methods on the same column if one
of the methods is one of the following:

• getBlob
• getClob
• getAsciiStream
• getBinaryStream
• getUnicodeStream

These methods share the same underlying stream; calling more than one of these
methods on the same column could result in undefined behavior. For example:

Java DB Reference Manual

241

ResultSet rs = s.executeQuery("SELECT text FROM CLOBS WHERE i = 1");
while (rs.next()) {
 aclob=rs.getClob(1);
 ip = rs.getAsciiStream(1);
}

The streams that handle long-columns are not thread safe. This means that if a user
chooses to open multiple threads and access the stream from each thread, the resulting
behavior is undefined.

Clobs are not locale-sensitive.

JDBC 2.0 features
This section documents the methods available since JDBC 2.0 that are supported by
Derby.

java.sql.CallableStatement interface: supported JDBC 2.0 methods
Table 94. JDBC 2.0 java.sql.CallableStatements Methods Supported

Returns Signature Implementation Notes

BigDecimal getBigDecimal '

Date getDate(int, Calendar) '

Time getTime(int,Calendar) '

Timestamp getTimestamp(int, Calendar) '

java.sql.Connection interface: supported JDBC 2.0 methods
Table 95. JDBC 2.0 Connection Methods Supported

Returns Signature

Statement createStatement(int resultSetType, int
resultSetConcurrency)

PreparedStatement prepareStatement(String sql, int resultSetType, int
resultSetConcurrency)

CallableStatement prepareCall(String sql, int resultSetType, int
resultSetConcurrency

Implementation notes
ResultSet.TYPE_FORWARD_ONLY and ResultSet.TYPE_SCROLL_INSENSITIVE are
the only result set types supported. If you request TYPE_SCROLL_SENSITIVE, Derby
issues an SQLWarning and returns a TYPE_SCROLL_INSENSITIVE ResultSet.

These methods support both ResultSet.CONCUR_READ_ONLY and
ResultSet.CONCUR_UPDATABLE concurrencies.

java.sql.DatabaseMetaData interface: supported JDBC 2.0 methods

Derby implements all of the JDBC 2.0 methods for this interface.

java.sql.PreparedStatement interface: supported JDBC 2.0 methods

Java DB Reference Manual

242

Table 96. JDBC 2.0 java.sql.PreparedStatement Methods Supported

Returns Signature
Implementation
Notes

void addBatch() '

ResultSetMetaData getMetaData() '

void setBlob(int i, Blob x) '

void setClob(int i, Clob x) '

java.sql.ResultSet interface: supported JDBC 2.0 methods
Table 97. JDBC 2.0 ResultSet Methods Supported

Returns Signature Implementation Notes

boolean absolute(int row) '

void afterLast() '

void beforeFirst() '

void beforeFirst() '

void deleteRow() After the row is deleted, the ResultSet
object will be positioned before the next
row. Before issuing any methods other than
close on the ResultSet object, the program
will need to reposition the ResultSet object.

boolean first() '

Blob getBlob(int columnIndex) See Mapping of java.sql.Blob and
java.sql.Clob interfaces

Blob getBlob(String column-Name)

Clob getClob(int columnIndex)

Clob getClob(String column-Name)

int getConcurrency() If the Statement object has
CONCUR_READ_ONLY concurrency,
then this method will return
ResultSet.CONCUR_READ_ONLY.
But if the Statement object has
CONCUR_UPDATABLE concurrency, then
the return value will depend on whether
the underlying language ResultSet is
updatable or not. If the language ResultSet
is updatable, then getConcurrency() will
return ResultSet.CONCUR_UPDATABLE.
If the language ResultSet is not updatable,
then getConcurrency() will return
ResultSet.CONCUR_READ_ONLY.

int getFetchDirection() '

int getFetchSize() Always returns 1.

Java DB Reference Manual

243

Returns Signature Implementation Notes

int getRow() '

void insertRow() '

boolean isAfterLast() '

boolean isBeforeFirst '

boolean isFirst() '

boolean isLast() '

boolean last() '

void moveToCurrentRow() '

void moveToInsertRow() '

boolean previous() '

boolean rowDeleted() For forward-only result sets this methods
always returns false, for scrollable result
sets it returns true if the row has been
deleted.

boolean rowInserted() Always returns false

boolean rowUpdated() For forward-only result sets this methods
always returns false, for scrollable result
sets it returns true if the row has been
updated.

boolean relative(int rows) '

void setFetchDirection(int
direction)

 '

void setFetchSize(int rows) A fetch size of 1 is the only size supported.

void updateRow() After the row is updated, the ResultSet
object will be positioned before the next
row. Before issuing any methods other than
close on the ResultSet object, the program
will need to reposition the ResultSet object.

java.sql.ResultSetMetaData interface: supported JDBC 2.0 methods

Derby implements all of the JDBC 2.0 methods for this interface.

java.sql.Statement interface: supported JDBC 2.0 methods
Table 98. JDBC2.0 java.sql.Statement Methods Supported

Returns Signature Implementation Notes

void addBatch(String sql) '

void clearBatch() '

int[] executeBatch() '

Java DB Reference Manual

244

Returns Signature Implementation Notes

int getFetchDirection() Method call does not throw an exception,
but call is ignored.

int getFetchSize() Method call does not throw an exception,
but call is ignored.

int getMaxFieldSize() '

void getMaxRows() '

void setEscapeProcessing(boolean
enable)

 '

void setFetchDirection(int direction) Method call does not throw an exception,
but call is ignored.

void setFetchSize(int rows) Method call does not throw an exception,
but call is ignored.

void setMaxFieldSize(int max) Has no effect on Blobs and Clobs.

void setMaxRows() '

java.sql.BatchUpdateException class
Thrown if there is a problem with a batch update.

JDBC Package for Connected Device Configuration/Foundation
Profile (JSR169)

Derby supports the JDBC API defined for the Connected Device
Configuration/Foundation Profile, also known as JSR169. The features supported are
a subset of the JDBC 3.0 specification. Support for JSR169 is limited to the embedded
driver. Derby does not support using the Network Server under JSR169.

To obtain a connection under JSR169 specifications, use the
org.apache.derby.jdbc.EmbeddedSimpleDataSource class. This class is
identical in implementation to the org.apache.derby.jdbc.EmbeddedDataSource
class. See the Java DB Developer's Guide for information on using the properties of the
org.apache.derby.jdbc.EmbeddedDataSource class.

Some other features to note concerning the JSR169 implementation using Derby:
• Applications must get and set DECIMAL values using alternate JDBC getXXX

and setXXX methods, such as getString() and setString(). Any alternate
method that works against a DECIMAL type with JDBC 2.0 or 3.0 will work in
JSR169.

• Java functions and procedures that use server-side JDBC parameters such as
CONTAINS SQL, READS SQL DATA or MODIFIES SQL DATA are not supported in
JSR169.

• The standard API used to obtain a connection (jdbc:default:connection) is
not supported in JSR169. A runtime error may occur when the routine tries to obtain
a connection using jdbc:default:connection.

• Diagnostic tables are not supported.
• Triggers are not supported.
• Encrypted databases are not supported.
• DriverManager is not supported. You cannot use DriverManager.getConnection() to

obtain a connection.

Java DB Reference Manual

245

JDBC 3.0 features
JDBC 3.0 adds some functionality to the core API. This section documents the features
supported by Derby.
Note: These features are present only in a Java 2 version 1.4 or higher environment.

These features are:
• New DatabaseMetaData methods. See java.sql.DatabaseMetaData interface:

supported JDBC 3.0 methods.
• Retrieval of parameter metadata. See java.sql.ParameterMetaData interface:

supported JDBC 3.0 methods and java.sql.PreparedStatement interface: supported
JDBC 3.0 methods.

• Retrieval of auto-generated keys. See java.sql.Statement interface: supported
JDBC 3.0 methods and java.sql.DatabaseMetaData interface: supported JDBC 3.0
methods.

• Savepoints. See java.sql.Savepoint interface and java.sql.Connection interface:
supported JDBC 3.0 methods.

• HOLD Cursors. See java.sql.DatabaseMetaData interface: supported JDBC 3.0
methods.

java.sql.Connection interface: supported JDBC 3.0 methods

Table 99. JDBC 3.0 Connection Methods Supported

Returns Signature Implementation Notes

SavepointsetSavepoint (String name) Creates a savepoint with the given name
in the current transaction and returns the
new Savepoint object that represents it.

SavepointsetSavepoint () Creates an unnamed savepoint in the
current transaction and returns the new
Savepoint object that represents it.

void releaseSavepoint (Savepoint
savepoint)

Removes the given Savepoint object from
the current transaction.

void rollback(Savepoint savepoint) Undoes all changes made after the given
Savepoint object was set.

PreparedStatementprepareStatement(String sql, int
autoGeneratedKeys)

autoGeneratedKeys argument is ignored
unless sql is an INSERT statement.

PreparedStatementprepareStatement(String sql, int []
columnIndexes)

Column indexes are ignored unless sql
is an INSERT statement. Every column
index in the array must correlate to
an auto-increment column within the
target table of the INSERT. Supported in
embedded mode only.

PreparedStatementprepareStatement(String sql,
String [] columnNames)

Column names are ignored unless sql
is an INSERT statement. Every column
name in the array must designate an
auto-increment column within the target
table of the INSERT. Supported in
embedded mode only.

• Autogenerated keys

Java DB Reference Manual

246

java.sql.DatabaseMetaData interface: supported JDBC 3.0 methods
Table 100. JDBC 3.0 DatabaseMetaData Methods Supported

Returns Signature Implementation Notes

boolean supportsSavepoints() '

int getDatabaseMajorVersion() '

int getDatabaseMinorVersion() '

int getJDBCMajorVersion() '

int getJDBCMinorVersion() '

int getSQLStateType() '

boolean supportsNamedParameters() '

boolean supportsMultipleOpenResults() '

boolean supportsGetGeneratedKeys() '

boolean supportsResultSetHoldability(int
holdability)

 '

int getResultSetHoldability() returns ResultSet.HOLD_CURSORS_OVER_COMMIT

java.sql.ParameterMetaData interface: supported JDBC 3.0 methods

ParameterMetaData is new in JDBC 3.0. It describes the number, type,
and properties of parameters to prepared statements. The method
PreparedStatement.getParameterMetaData returns a ParameterMetaData object
that describes the parameter markers that appear in the PreparedStatement object.
See java.sql.PreparedStatement interface: supported JDBC 3.0 methods for more
information.

Interface ParameterMetaData methods are listed below.
Table 101. JDBC 3.0 ParameterMetaData Methods

Returns Signature Implementation Notes

int getParameterCount() '

int isNullable(int param) '

boolean isSigned(int param) '

int getPrecision(int param) '

int getScale(int param) '

int getParameterType(int param) '

String getParamterTypeName (int
param)

 '

String getParamterClassName (int
param)

 '

int getParameterMode (int param) '

Java DB Reference Manual

247

java.sql.PreparedStatement interface: supported JDBC 3.0 methods

The method PreparedStatement.getParameterMetaData returns a ParameterMetaData
object describing the parameter markers that appear in the PreparedStatement object.
See java.sql.ParameterMetaData interface: supported JDBC 3.0 methods for more
information.
Table 102. JDBC 3.0 PreparedStatement Methods

Returns Signature Implementation Notes

ParameterMetaData getParameterMetaData() '

java.sql.Savepoint interface

The Savepoint interface is new in JDBC 3.0. It contains new methods to set, release,
or roll back a transaction to designated savepoints. Once a savepoint has been set,
the transaction can be rolled back to that savepoint without affecting preceding work.
Savepoints provide finer-grained control of transactions by marking intermediate points
within a transaction.

Setting and rolling back to a savepoint

The JDBC 3.0 API adds the method Connection.setSavepoint, which sets a savepoint
within the current transaction. The Connection.rollback method has been overloaded
to take a savepoint argument. See java.sql.Connection interface: supported JDBC 3.0
methods for more information.

The code example below inserts a row into a table, sets the savepoint svpt1, and then
inserts a second row. When the transaction is later rolled back to svpt1, the second
insertion is undone, but the first insertion remains intact. In other words, when the
transaction is committed, only the row containing '1' will be added to TABLE1.

conn.setAutoCommit(false); // Autocommit must be off to use savepoints.
Statement stmt = conn.createStatement();
int rows = stmt.executeUpdate("INSERT INTO TABLE1 (COL1) VALUES(1)");
// set savepoint
Savepoint svpt1 = conn.setSavepoint("S1");
rows = stmt.executeUpdate("INSERT INTO TABLE1 (COL1) VALUES (2)");
...
conn.rollback(svpt1);
...
conn.commit();

Releasing a savepoint

The method Connection.releaseSavepoint takes a Savepoint object as a parameter and
removes it from the current transaction. Once a savepoint has been released, attempting
to reference it in a rollback operation will cause an SQLException to be thrown.

Any savepoints that have been created in a transaction are automatically released and
become invalid when the transaction is committed or when the entire transaction is rolled
back.

Rolling a transaction back to a savepoint automatically releases and makes invalid any
other savepoints created after the savepoint in question.

Rules for savepoints

The savepoint cannot be set within a batch of statements to enabled partial recovery. If a
savepoint is set any time before the method executeBatch is called, it is set before any of
the statements that have been added to the batch are executed.

Java DB Reference Manual

248

A savepoint-Name can be reused after it has been released explicitly (by issuing a
release of savepoint) or implicitly (by issuing a connection commit/rollback).

Restrictions on savepoints

Derby does not support savepoints within a trigger.

Derby does not release locks as part of the rollback to savepoint.
Table 103. JDBC 3.0 Savepoint Methods

Returns Signature Implementation Notes

int getSavepointId() Throws SQLException if this is a named savepoint.
Retrieves the generated ID for the savepoint that this
Savepoint object represents.

String getSavepointName() Throws SQLException if this is an unnamed savepoint.
Retrieves the name of the savepoint that this Savepoint
object represents.

java.sql.Statement interface: supported JDBC 3.0 methods
Table 104. JDBC 3.0 Statement Methods

Returns Signature Implementation Notes

ResultSet getGeneratedKeys() If the user has indicated that
auto-generated keys should be
made available, this method returns
the same results as a call to the
IDENTITY_VAL_LOCAL function.
Otherwise this method returns null.

boolean execute(String sql, int
autoGeneratedKeys)

autoGeneratedKeys argument is
ignored unless sql is an INSERT
statement.

boolean execute(String sql, int []
columnIndexes)

Column indexes are ignored unless
sql is an INSERT statement. Every
column index in the array must
correlate to an auto-increment
column within the target table of the
INSERT. Supported in embedded
mode only.

boolean execute(String sql, String
[] columnNames)

Column names are ignored unless
sql is an INSERT statement. Every
column name in the array must
designate an auto-increment column
within the target table of the INSERT.
Supported in embedded mode only.

int executeUpdate(String
sql, int
autoGeneratedKeys)

autoGeneratedKeys argument is
ignored unless sql is an INSERT
statement.

int executeUpdate(String
sql, int [] columnIndexes)

Column indexes are ignored unless
sql is an INSERT statement. Every
column index in the array must
correlate to an auto-increment

Java DB Reference Manual

249

Returns Signature Implementation Notes

column within the target table of the
INSERT. Supported in embedded
mode only.

int executeUpdate(String
sql, String []
columnNames)

Column names are ignored unless
sql is an INSERT statement. Every
column name in the array must
designate an auto-increment column
within the target table of the INSERT.
Supported in embedded mode only.

Autogenerated keys

JDBC 3.0's auto-generated keys feature provides a way to retrieve values from
columns that are part of an index or have a default value assigned. Derby supports
the auto-increment feature, which allows users to create columns in tables for which
the database system automatically assigns increasing integer values. In JDBC 3.0,
the method Statement.getGeneratedKeys can be called to retrieve the value of such
a column. This method returns a ResultSet object with a column for the automatically
generated key. Calling ResultSet.getMetaData on the ResultSet object returned by
getGeneratedKeys produces a ResultSetMetaData object that is similar to that returned
by IDENTITY_VAL_LOCAL.

Users can indicate that auto-generated columns should be made available for
retrieval by passing one of the following values as a second argument to the
Connection.prepareStatement, Statement.execute, or Statement.executeUpdate
methods:

• A constant indicating that auto-generated keys should be made available. The
specific constant to use is Statement.RETURN_GENERATED_KEYS.

• An array of the names of the columns in the inserted row that should be made
available. If any column name in the array does not designate an auto-increment
column, Derby will throw an error. (This argument is supported only with the Derby
embedded driver.)

• An array of the positions of the columns in the inserted row that should be made
available. If any column position in the array does not correlate to an auto-increment
column, Derby will throw an error. (This argument is supported only with the Derby
embedded driver.)

Example

Assume that we have a table TABLE1 defined as follows:

CREATE TABLE TABLE1 (C11 int, C12 int GENERATED ALWAYS AS IDENTITY)

The following three code fragments will all do the same thing: that is, they will create a
ResultSet that contains the value of C12 that is inserted into TABLE1.

Code fragment 1:

Statement stmt = conn.createStatement();
stmt.execute(
 "INSERT INTO TABLE1 (C11) VALUES (1)",
 Statement.RETURN_GENERATED_KEYS);
ResultSet rs = stmt.getGeneratedKeys();

Code fragment 2:

Statement stmt = conn.createStatement();

Java DB Reference Manual

250

String [] colNames = new String [] { "C12" };
stmt.execute(
 "INSERT INTO TABLE1 (C11) VALUES (1)",
 colNames);
ResultSet rs = stmt.getGeneratedKeys();

Code fragment 3:

Statement stmt = conn.createStatement();
int [] colIndexes = new int [] { 2 };
stmt.execute(
 "INSERT INTO TABLE1 (C11) VALUES (1)",
 colIndexes);
ResultSet rs = stmt.getGeneratedKeys();

If there is no indication that auto-generated columns should be made available for
retrieval, a call to Statement.getGeneratedKeys will return a null ResultSet.

JDBC 4.0-only features
JDBC 4.0 adds some functionality to the core API. This section documents the features
supported by Derby.

Note: These features are present only in a JDK 1.6 or higher environment.

These features are:

• DataSources. To support the JDBC 4.0 ease of development, Derby introduces
new implementations of javax.sql.DataSource. See javax.sql.DataSource
interface: JDBC 4.0 features.

• Autoloading of JDBC drivers. In earlier versions of JDBC, applications had
to manually register drivers before requesting Connections. With JDBC 4.0,
applications no longer need to issue a Class.forName() on the driver name; instead,
the DriverManager will find an appropriate JDBC driver when the application
requests a Connection.

• SQLExceptions. JDBC 4.0 introduces refined subclasses of SQLException. See
Refined subclasses of SQLException.

• Wrappers. JDBC 4.0 introduces the concept of wrapped JDBC objects. This is
a formal mechanism by which application servers can look for vendor-specific
extensions inside standard JDBC objects like Connections, Statements, and
ResultSets. For Derby, this is a vacuous exercise because Derby does not expose
any of these extensions.

• Statement events. With JDBC 4.0, Connection pools can listen for
Statement closing and Statement error events. New methods were
added to javax.sql.PooledConnection: addStatementEventListener and
removeStatementEventListener.

• Streaming APIs. JDBC 4.0 adds new overloads of the streaming methods in
CallableStatement, PreparedStatement, and ResultSet. These are the setXXX and
updateXXX methods which take java.io.InputStream and java.io.Reader arguments.
The new overloads allow you to omit the length arguments or to specify long
lengths.

• New methods. New methods were added to the following interfaces:
javax.sql.Connection, javax.sql.DatabaseMetaData, and
javax.sql.Statement. See java.sql.Connection interface: JDBC 4.0 features,
java.sql.DatabaseMetaData interface: JDBC 4.0 features, java.sql.Statement
interface: JDBC 4.0 features.

Refined subclasses of SQLException

Java DB Reference Manual

251

If your application runs on JDK 1.6 or higher, exceptions raised by Derby will generally be
one of the refined subclasses of SQLException, introduced by JDBC 4.0. These refined
exceptions are raised under the conditions described by their respective javadoc.

• java.sql.SQLClientInfoException
• java.sql.SQLDataException
• java.sql.SQLFeatureNotSupportedException
• java.sql.SQLIntegrityConstraintViolationException
• java.sql.SQLInvalidAuthorizationSpecException
• java.sql.SQLSyntaxErrorException
• java.sql.SQLTransactionRollbackException
• java.sql.SQLTransientConnectionException

java.sql.Connection interface: JDBC 4.0 features

JDBC 4.0 adds new capabilities to Connections:

• LOB creation - New methods, createBlob() and createClob() let you create empty
Blobs and Clobs, which you can then fill up before stuffing into a column.

• Validity tracking - The isValid method tells you whether your Connection is still
alive.

java.sql.DatabaseMetaData interface: JDBC 4.0 features

Derby implements all of the new metadata methods added by JDBC 4.0.

• Capability reports - JDBC 4.0 adds new methods for querying the capabilities
of a database. These include autoCommitFailureClosesAllResultSets,
providesQueryObjectGenerator, getClientInfoProperties, and
supportsStoredFunctionsUsingCallSyntax.

• Column metadata - The getColumns method reports IS_AUTOINCREMENT =
YES if a column is generated.

• Function metadata - JDBC 4.0 adds new methods for inspecting the arguments
and return types of functions, including user-defined functions. These new methods
are getFunctions and getFunctionColumns. These methods behave similarly to
getProcedures and getProcedureColumns.

• Procedure metadata - The getProcedureColumns method reports additional
information about procedure arguments. For more information, see the
javadoc for this method. The new columns in the ResultSet returned
by getProcedureColumns are: COLUMN_DEF, SQL_DATA_TYPE,
SQL_DATETIME_SUB, CHAR_OCTET_LENGTH, ORDINAL_POSITION,
IS_NULLABLE, and SPECIFIC_NAME.

• Schema metadata - JDBC 4.0 adds a new getSchemas overload, which lets you
look up schemas based on a name pattern.

java.sql.Statement interface: JDBC 4.0 features

Derby's Statements implement the following new metadata methods added by JDBC 4.0.

• Pooling support - JDBC 4.0 adds new methods to help application servers
manage pooled Statements: isPoolable and setPoolable.

• Validity tracking - JDBC 4.0 lets you track the validity of a Statement through the
new isClosed method.

javax.sql.DataSource interface: JDBC 4.0 features

Derby has added new JDBC 4.0-specific DataSources. Use these DataSources if your
application runs on JDK 1.6 or higher.

Java DB Reference Manual

252

• org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40
• org.apache.derby.jdbc.EmbeddedDataSource40
• org.apache.derby.jdbc.EmbeddedXADataSource40
• org.apache.derby.jdbc.ClientConnectionPoolDataSource40
• org.apache.derby.jdbc.ClientDataSource40
• org.apache.derby.jdbc.ClientXADataSource40

JDBC escape syntax
JDBC provides a way of smoothing out some of the differences in the way different
DBMS vendors implement SQL. This is called escape syntax. Escape syntax signals
that the JDBC driver, which is provided by a particular vendor, scans for any escape
syntax and converts it into the code that the particular database understands. This makes
escape syntax DBMS-independent.

A JDBC escape clause begins and ends with curly braces. A keyword always follows the
opening curly brace:

{keyword }

Derby supports the following JDBC escape keywords, which are case-insensitive:
• JDBC escape keyword for call statements

The escape keyword for use in CallableStatements.
• JDBC escape syntax

The escape keyword for date formats.
• JDBC escape syntax for LIKE clauses

The keyword for specifying escape characters for LIKE clauses.
• JDBC escape syntax for fn keyword

The escape keyword for scalar functions.
• JDBC escape syntax for outer joins

The escape keyword for outer joins.
• JDBC escape syntax for time formats

The escape keyword for time formats.
• JDBC escape syntax for timestamp formats

The escape keyword for timestamp formats.

Other JDBC escape keywords are not supported.
Note: Derby returns the SQL unchanged in the Connection.nativeSQL call,
since the escape syntax is native to SQL. In addition, it is unnecessary to call
Statement.setEscapeProcessing for this reason.

JDBC escape keyword for call statements

This syntax is supported for a java.sql.Statement and a java.sql.PreparedStatement in
addition to a CallableStatement.

Syntax

{call statement }

-- Call a Java procedure
{ call TOURS.BOOK_TOUR(?, ?) }

Java DB Reference Manual

253

JDBC escape syntax

Derby interprets the JDBC escape syntax for date as equivalent to the SQL syntax for
dates.

Syntax

{d 'yyyy-mm-dd'}

Equivalent to

DATE('yyyy-mm-dd')

VALUES {d '1999-01-09'}

JDBC escape syntax for LIKE clauses

The percent sign % and underscore _ are metacharacters within SQL LIKE clauses.
JDBC provides syntax to force these characters to be interpreted literally. The JDBC
clause immediately following a LIKE expression allows you to specify an escape
character:

Syntax

WHERE CharacterExpression [NOT]
 LIKE
 CharacterExpressionWithWildCard
 { ESCAPE 'escapeCharacter' }

-- find all rows in which a begins with the character "%"
SELECT a FROM tabA WHERE a LIKE '$%%' {escape '$'}
-- find all rows in which a ends with the character "_"
SELECT a FROM tabA WHERE a LIKE '%=_' {escape '='}

Note: ? is not permitted as an escape character if the LIKE pattern is also a dynamic
parameter (?).

In some languages, a single character consists of more than one collation unit (a 16-bit
character). The escapeCharacter used in the escape clause must be a single collation
unit in order to work properly.

You can also use the escape character sequence for LIKE without using JDBC's curly
braces; see Boolean expressions.

JDBC escape syntax for fn keyword

You can specify functions in JDBC escape syntax, by using the fn keyword.

Syntax

{fn functionCall}

where functionCall is the name of one of the following scalar functions:

abs
Returns the absolute value of a number.

abs(NumericExpression)

The JDBC escape syntax {fn abs(NumericExpression)} is equivalent to the built-in
syntax ABSOLUTE(NumericExpression). For more information, see ABS or ABSVAL
function.

acos

Java DB Reference Manual

254

Returns the arc cosine of a specified number.

acos(number)

The JDBC escape syntax {fn acos(number)} is equivalent to the built-in syntax
ACOS(number). For more information, see ACOS function.

asin
Returns the arc sine of a specified number.

asin(number)

The JDBC escape syntax {fn asin(number)} is equivalent to the built-in syntax
ASIN(number). For more information, see ASIN function.

atan
Returns the arc tangent of a specified number.

atan(number)

The JDBC escape syntax {fn atan(number)} is equivalent to the built-in syntax
ATAN(number). For more information, see ATAN function.

ceiling
Rounds the specified number up, and returns the smallest number that is greater than
or equal to the specified number.

ceiling(number)

The JDBC escape syntax {fn ceiling(number)} is equivalent to the built-in syntax
CEILING(number). For more information, see CEIL or CEILING function.

concat
Returns the concatenation of character strings.

concat(CharacterExpression, CharacterExpression)

Character string formed by appending the second string to the first string. If
either string is null, the result is NULL. The JDBC escape syntax {fn concat
(CharacterExpression, CharacterExpression) is equivalent to the built-in syntax
{ CharacterExpression || CharacterExpression }. For more information, see
Concatenation operator.

cos
Returns the cosine of a specified number.

cos(number)

The JDBC escape syntax {fn cos(number)} is equivalent to the built-in syntax
COS(number). For more information, see COS function.

degrees
Converts a specified number from radians to degrees.

degrees(number)

The JDBC escape syntax {fn degrees(number)} is equivalent to the built-in syntax
DEGREES(number). For more information, see DEGREES function.

exp
Returns e raised to the power of the specified number.

exp(number)

Java DB Reference Manual

255

The JDBC escape syntax {fn exp(number)} is equivalent to the built-in syntax
EXP(number). For more information, see EXP function.

floor
Rounds the specified number down, and returns the largest number that is less than
or equal to the specified number.

floor(number)

The JDBC escape syntax {fn floor(number)} is equivalent to the built-in syntax
FLOOR(number). For more information, see FLOOR function.

locate
Returns the position in the second CharacterExpression of the first occurrence
of the first CharacterExpression. Searches from the beginning of the second
CharacterExpression, unless the startIndex parameter is specified.

locate(CharacterExpression,CharacterExpression [, startIndex])

The JDBC escape syntax {fn locate(CharacterExpression,CharacterExpression
[, startIndex])} is equivalent to the built-in syntax LOCATE(CharacterExpression,
CharacterExpression [, StartPosition]). For more information, see LOCATE function.

log
Returns the natural logarithm (base e) of the specified number.

log(number)

The JDBC escape syntax {fn log(number)} is equivalent to the built-in syntax
LOG(number). For more information, see LN or LOG function.

log10
Returns the base-10 logarithm of the specified number.

log10(number)

The JDBC escape syntax {fn log10(number)} is equivalent to the built-in syntax
LOG10(number). For more information, see LOG10 function.

mod
Returns the remainder (modulus) of argument 1 divided by argument 2. The result is
negative only if argument 1 is negative.

mod(integer_type, integer_type)

For more information, see MOD function.

pi
Returns a value that is closer than any other value to pi.

pi()

The JDBC escape syntax {fn pi()} is equivalent to the built-in syntax PI(). For more
information, see PI function.

radians
Converts a specified number from degrees to radians.

radians(number)

The JDBC escape syntax {fn radians(number)} is equivalent to the built-in syntax
RADIANS(number). For more information, see RADIANS function.

sin

Java DB Reference Manual

256

Returns the sine of a specified number.

sin(number)

The JDBC escape syntax {fn sin(number)} is equivalent to the built-in syntax
SIN(number). For more information, see SIN function.

sqrt
Returns the square root of floating point number.

sqrt(FloatingPointExpression)

The JDBC escape syntax {fn sqrt (FloatingPointExpression)} is equivalent to the
built-in syntax SQRT(FloatingPointExpression). For more information, see SQRT
function.

substring
Forms a character string by extracting length characters from the
CharacterExpression beginning at startIndex. The index of the first character in the
CharacterExpression is 1.

substring(CharacterExpression, startIndex, length)

tan
Returns the tangent of a specified number.

tan(number)

The JDBC escape syntax {fn tan(number)} is equivalent to the built-in syntax
TAN(number). For more information, see TAN function.

TIMESTAMPADD
Use the TIMESTAMPADD function to add the value of an interval to a timestamp. The
function applies the integer to the specified timestamp based on the interval type and
returns the sum as a new timestamp. You can subtract from the timestamp by using
negative integers.

The TIMESTAMPADD is a JDBC escaped function, and is only accessible by using the
JDBC escape function syntax.

TIMESTAMPADD(interval, integerExpression, timestampExpression)

To perform TIMESTAMPADD on dates and times, it is necessary to convert the dates
and times to timestamps. Dates are converted to timestamps by putting 00:00:00.0 in
the time-of-day fields. Times are converted to timestamps by putting the current date
in the date fields.

You should not put a datetime column inside of a timestamp arithmetic function in
WHERE clauses because the optimizer will not use any index on the column.

TIMESTAMPDIFF
Use the TIMESTAMPDIFF function to find the difference between two timestamp
values at a specified interval. For example, the function can return the number of
minutes between two specified timestamps.

The TIMESTAMPDIFF is a JDBC escaped function, and is only accessible by using
the JDBC escape function syntax.

TIMESTAMPDIFF(interval, timestampExpression1, timestampExpression2)

To perform TIMESTAMPDIFF on dates and times, it is necessary to convert the dates
and times to timestamps. Dates are converted to timestamps by putting 00:00:00.0 in

Java DB Reference Manual

257

the time-of-day fields. Times are converted to timestamps by putting the current date
in the date fields.

You should not put a datetime column inside of a timestamp arithmetic function in
WHERE clauses because the optimizer will not use any index on the column.

Valid intervals for TIMESTAMPADD and TIMESTAMPDIFF
The TIMESTAMPADD and TIMESTAMPDIFF functions are used to perform arithmetic
with timestamps. These two functions use the following valid intervals for arithmetic
operations:

• SQL_TSI_DAY
• SQL_TSI_FRAC_SECOND
• SQL_TSI_HOUR
• SQL_TSI_MINUTE
• SQL_TSI_MONTH
• SQL_TSI_QUARTER
• SQL_TSI_SECOND
• SQL_TSI_WEEK
• SQL_TSI_YEAR

Examples for the TIMESTAMPADD and TIMESTAMPDIFF escape functions

To return a timestamp value one month later than the current timestamp, use the
following syntax:

{fn TIMESTAMPADD(SQL_TSI_MONTH, 1, CURRENT_TIMESTAMP)}

To return the number of weeks between now and the specified time on January 1, 2008,
use the following syntax:

{fn TIMESTAMPDIFF(SQL_TSI_WEEK, CURRENT_TIMESTAMP,
 timestamp('2008-01-01-12.00.00.000000'))}

JDBC escape syntax for outer joins

Derby interprets the JDBC escape syntax for outer joins (and all join operations) as
equivalent to the correct SQL syntax for outer joins or the appropriate join operation.

For information about join operations, see JOIN operations.

Syntax

{oj JOIN operations [JOIN operations]* }

Equivalent to

JOIN operations [JOIN operations]*

-- outer join
SELECT *
FROM
{oj Countries LEFT OUTER JOIN Cities ON
 (Countries.country_ISO_code=Cities.country_ISO_code)}
-- another join operation
SELECT *
FROM
{oj Countries JOIN Cities ON
 (Countries.country_ISO_code=Cities.country_ISO_code)}
-- a TableExpression can be a joinOperation. Therefore
-- you can have multiple join operations in a FROM clause
SELECT E.EMPNO, E.LASTNAME, M.EMPNO, M.LASTNAME
FROM {oj EMPLOYEE E INNER JOIN DEPARTMENT
INNER JOIN EMPLOYEE M ON MGRNO = M.EMPNO ON E.WORKDEPT = DEPTNO};

Java DB Reference Manual

258

JDBC escape syntax for time formats

Derby interprets the JDBC escape syntax for time as equivalent to the correct SQL
syntax for times. Derby also supports the ISO format of 8 characters (6 digits, and 2
decimal points).

Syntax

{t 'hh:mm:ss'}

Equivalent to

TIME 'hh:mm:ss'

Example

VALUES {t '20:00:03'}

JDBC escape syntax for date formats

Derby interprets the JDBC escape syntax for dates as equivalent to the correct SQL
syntax for dates.

Syntax

{d 'yyyy-mm-dd'}

Equivalent to

DATE 'yyyy-mm-dd'

Example

VALUES {d '1995-12-19'}

JDBC escape syntax for timestamp formats

Derby interprets the JDBC escape syntax for timestamp as equivalent to the correct SQL
syntax for timestamps. Derby also supports the ISO format of 23 characters (17 digits, 3
dashes, and 3 decimal points).

Syntax

{ts 'yyyy-mm-dd hh:mm:ss.f...'}

Equivalent to

TIMESTAMP 'yyyy-mm-dd hh:mm:ss.f...'

The fractional portion of timestamp constants (.f...) can be omitted.

VALUES {ts '1999-01-09 20:11:11.123455'}

Java DB Reference Manual

259

Setting attributes for the database connection URL

Derby allows you to supply a list of attributes to its database connection URL, which is a
JDBC feature.

The attributes are specific to Derby.

You typically set attributes in a semicolon-separated list following the protocol and
subprotocol. For information on how you set attributes, see Attributes of the Derby
database connection URL. This chapter provides reference information only.

Note: Attributes are not parsed for correctness. If you pass in an incorrect attribute or
corresponding value, it is simply ignored.

bootPassword=key attribute
Function
Specifies the key to use to :

• Encrypt a new database
• Configure an existing unencrypted database for encryption
• Boot an existing encrypted database

Specify an alphanumeric string that is at least eight characters long.

Combining with other attributes

When you create a new database, the bootPassword=key attribute must be combined
with the create=true and dataEncryption=true attributes.

When you configure an existing unencrypted database for encryption, the
bootPassword=key attribute must be combined with the dataEncryption=true attribute.
For an existing, unencrypted database for which authentication and SQL authorization
are both enabled, only the database owner can perform encryption. Please see "Enabling
user authentication" and "Setting the SQL standard authorization mode" in the Java DB
Developer's Guide for more information.

When you boot an existing encrypted database, no other attributes are necessary.

Examples

-- create a new, encrypted database
jdbc:derby:newDB;create=true;dataEncryption=true;
 bootPassword=cseveryPlace
-- configure an existing unencrypted database for encryption
jdbc:derby:salesdb;dataEncryption=true;bootPassword=cseveryPlace
-- boot an existing encrypted database
jdbc:derby:encryptedDB;bootPassword=cseveryPlace

collation=collation attribute
Function

The collation attribute is an optional attribute that specifies whether collation is based
on the territory specified for the database or Unicode codepoint collation. The valid
values for the collation attribute are: TERRITORY_BASED and UCS_BASIC. The
default collation is Unicode codepoint collation (UCS_BASIC).

Restriction: The collation attribute can be specified only when you create a
database. You cannot specify this attribute on an existing database or when you upgrade
a database.

Java DB Reference Manual

260

If you include the collation attribute with the value TERRITORY_BASED when you
create the Derby database, the collation is based on the language and country codes that
you specify with the territory attribute.

If you do not specify the territory attribute when you create the database, Derby uses
the java.util.Locale.getDefault method to determine the current value of the
default locale for this instance of the Java Virtual Machine (JVM).

Note: The collation attribute applies only to user-defined tables. The system tables
use the Unicode codepoint collation.

Example

The following example shows the URL to create the MexicanDB database. The territory
attribute specifies Spanish for the language code and Mexico for the country code. The
collation attribute specifies that the collation for the database is territory based.

jdbc:derby:MexicanDB;create=true;territory=es_MX;collation=TERRITORY_BASED

For information on how Derby handles collation, see "Character-based collation in Derby"
in the Java DB Developer's Guide

create=true attribute
Function

Creates the standard database specified within the database connection URL Derby
system and then connects to it. If the database cannot be created, the error appears in
the error log and the connection attempt fails with an SQLException indicating that the
database cannot be found.

If the database already exists, creates a connection to the existing database and an
SQLWarning is issued.

JDBC does not remove the database on failure to connect at create time if failure occurs
after the database call occurs. If a database connection URL used create=true and the
connection fails to be created, check for the database directory. If it exists, remove it and
its contents before the next attempt to create the database.

Database owner

When the database is created, the current authorization identifier becomes the database
owner (see the user=userName attribute). If authentication and SQL authorization
are both enabled (see "Enabling user authentication" and "Setting the SQL standard
authorization mode" in the Java DB Developer's Guide), only the database owner
can shut down the database, encrypt it, reencrypt it with a new boot password or new
encryption key, or perform a full upgrade. If authentication is not enabled, and no user
is supplied, the database owner defaults to "APP", which is also the name of the default
schema (see SET SCHEMA statement).

Combining with other attributes

You must specify a databaseName (after the subprotocol in the database connection
URL) or a databaseName=nameofDatabase attribute with this attribute.

You can combine this attribute with other attributes. To specify a territory when creating a
database, use the territory=ll_CC attribute.
Note: If you specify create=true and the database already exists, an SQLWarning is
raised.

jdbc:derby:sampleDB;create=true

Java DB Reference Manual

261

jdbc:derby:;databaseName=newDB;create=true;

createFrom=path attribute
Function

You can specify the createFrom=path attribute in the boot time connection URL to create
a database using a full backup at a specified location. If there is a database with the
same name in derby.system.home, an error will occur and the existing database will
be left intact. If there is not an existing database with the same name in the current
derby.system.home location, the whole database is copied from the backup location to
the derby.system.home location and started.

The Log files are copied to the default location. The logDevice attribute can be
used in conjunction with createFrom=path to store logs in a different location. With
createFrom=path you do not need to copy the individual log files to the log directory.

Combining with other attributes

Do not combine this attribute with rollForwardRecoveryFrom, restoreFrom, or create.

URL: jdbc:derby:wombat;createFrom=d:/backup/wombat

databaseName=nameofDatabase attribute
Function

Specifies a database name for a connection; it can be used instead of specifying the
database name in after the subprotocol.

For example, these URL (and Properties object) combinations are equivalent:
• jdbc:derby:toursDB
• jdbc:derby:;databaseName=toursDB
• jdbc:derby:(with a property databaseName and its value set to toursDB in the

Properties object passed into a connection request)

If the database name is specified both in the URL (as a subname) and as an attribute,
the database name set as the subname has priority. For example, the following database
connection URL connects to toursDB:

jdbc:derby:toursDB;databaseName=flightsDB

Allowing the database name to be set as an attribute allows the getPropertyInfo method
to return a list of choices for the database name based on the set of databases known to
Derby. For more information, see java.sql.Driver.getPropertyInfo method.

Combining with other attributes

You can combine this attribute with all other attributes.

jdbc:derby:;databaseName=newDB;create=true

dataEncryption=true attribute
Function

Specifies data encryption on disk for a new database or to configure an existing
unencrypted database for encryption. For information about data encryption, see
"Encrypting databases on disk" in the Java DB Developer's Guide.

Combining with other attributes

Java DB Reference Manual

262

The dataEncryption attribute must be combined with the bootPassword=key attribute
or the newEncryptionKey=key attribute. You have the option of also specifying the
encryptionProvider=providerName and encryptionAlgorithm=algorithm attributes.

For an existing, unencrypted database for which authentication and SQL authorization
are both enabled, only the database owner can perform encryption. See also "Enabling
user authentication" and "Setting the SQL standard authorization mode" in the Java DB
Developer's Guide for more information.

Examples

 -- encrypt a new database
jdbc:derby:encryptedDB;create=true;dataEncryption=true;
 bootPassword=cLo4u922sc23aPe
 -- configure an existing unencrypted database for encryption
 jdbc:derby:salesdb;dataEncryption=true;bootPassword=cLo4u922sc23aPe

encryptionKey=key attribute
Function
Specifies the external key to use to:

• Encrypt a new database
• Configure an existing unencrypted database for encryption
• Boot an existing encrypted database

Your application must provide the encryption key.

Combining with other attributes

When creating a new database, you must combine the encryptionKey attribute with the
create=true and dataEncryption=true attributes.

When you configure an existing unencrypted database for encryption, the encryptionKey
attribute must be combined with the dataEncryption=true attribute. For an existing,
unencrypted database for which authentication and SQL authorization are both
enabled, only the database owner can perform encryption. Please see "Enabling user
authentication" and "Setting the SQL standard authorization mode" in the Java DB
Developer's Guide for more information.

When booting an existing encrypted database, you must also specify the
encryptionAlgorithm attribute if the algorithm that was used when the database was
created is not the default algorithm.

The default encryption algorithm used by Derby is DES/CBC/NoPadding.

Examples

Example of a JDBC URL that creates a new encrypted database:

jdbc:derby:newDB;create=true;dataEncryption=true;
 encryptionAlgorithm=DES/CBC/NoPadding;encryptionKey=6162636465666768

Example of a JDBC URL that configures an existing unencrypted database for
encryption:

jdbc:derby:salesdb;dataEncryption=true;encryptionKey=6162636465666768

Example of a JDBC URL that boots an encrypted database:

jdbc:derby:encryptedDB;encryptionKey=6162636465666768

encryptionProvider=providerName attribute

Java DB Reference Manual

263

Function

Specifies the provider for data encryption. For information about data encryption, see
"Encrypting databases on disk" in the Java DB Developer's Guide.

If this attribute is not specified, the default encryption provider is the one included in the
JVM that you are using.

Combining with other attributes

The encryptionProvider attribute must be combined with the bootPassword=key and
dataEncryption=true attributes. You can also specify the encryptionAlgorithm=algorithm
attribute.

For an existing, unencrypted database for which authentication and SQL authorization
are both enabled, only the database owner can perform encryption or reencryption.
Please see "Enabling user authentication" and "Setting the SQL standard authorization
mode" in the Java DB Developer's Guide for more information.

Examples

-- create a new, encrypted database
jdbc:derby:encryptedDB;create=true;dataEncryption=true;
 encryptionProvider=com.sun.crypto.provider.SunJCE;
 encryptionAlgorithm=DESede/CBC/NoPadding;
 bootPassword=cLo4u922sc23aPe
-- configure an existing database for encryption
 jdbc:derby:salesdb;dataEncryption=true;
 encryptionProvider=com.sun.crypto.provider.SunJCE;
 encryptionAlgorithm=DESede/CBC/NoPadding;
 bootPassword=cLo4u922sc23aPe

encryptionAlgorithm=algorithm attribute
Function

Specifies the algorithm for data encryption.

Use the Java conventions when you specify the algorithm, for example:

algorithmName/feedbackMode/padding

The only padding type that is allowed with Derby is NoPadding.

If no encryption algorithm is specified, the default value is DES/CBC/NoPadding.

For information about data encryption, see "Encrypting databases on disk" in the Java
DB Developer's Guide.

Combining with other attributes

The encryptionAlgorithm attribute must be combined with the bootPassword=key
attribute and the dataEncryption=true attribute. You have the option of also specifying
the encryptionProvider=providerName attribute to specify the encryption provider of the
algorithm.

For an existing database for which authentication and SQL authorization are both
enabled, only the database owner can perform encryption or reencryption. Please see
"Enabling user authentication" and "Setting the SQL standard authorization mode" in the
Java DB Developer's Guide for more information.

Examples

 -- encrypt a new database
 jdbc:derby:encryptedDB;create=true;dataEncryption=true;
 encryptionProvider=com.sun.crypto.provider.SunJCE;

Java DB Reference Manual

264

 encryptionAlgorithm=DESede/CBC/NoPadding;
 bootPassword=cLo4u922sc23aPe
-- configure an existing database for encryption
 jdbc:derby:salesdb;dataEncryption=true;
 encryptionProvider=com.sun.crypto.provider.SunJCE;
 encryptionAlgorithm=DESede/CBC/NoPadding;
 bootPassword=cLo4u922sc23aPe

Note: If the specified provider does not support the specified algorithm, Derby returns an
exception.

logDevice=logDirectoryPath attribute
Function

The logDirectoryPath specifies the path to the directory on which to store the database
log during database creation or restore. Even if specified as a relative path, the
logDirectoryPath is stored internally as an absolute path.

Combining with other attributes

Use in conjunction with create, createFrom, restoreFrom, or rollForwardRecoveryFrom.

jdbc:derby:newDB;create=true;logDevice=d:/newDBlog

newEncryptionKey=key attribute
Function

Specifies a new external encryption key for an encrypted database. All of the existing
data in the database is encrypted using the new encryption key and any new data
written to the database will use this key for encryption. For more information about this
attribute, see "Encrypting databases with a new external encryption key" in the Java DB
Developer's Guide.

Combining with other attributes

The newEncryptionKey attribute must be combined with the encryptionKey=key attribute.

You cannot change the encryption provider or the encryption algorithm when you use the
newEncryptionKey attribute.

For an existing encrypted database for which authentication and SQL authorization are
both enabled, only the database owner can perform reencryption. Please see "Enabling
user authentication" and "Setting the SQL standard authorization mode" in the Java DB
Developer's Guide for more information.

Example

-- specify a new encryption key for a database
jdbc:derby:salesdb;encryptionKey=6162636465666768;newEncryptionKey=6862636465666768

newBootPassword=newPassword attribute
Function

Specifies a new boot password for an encrypted database. A new encryption key is
generated internally by the engine and the key is protected using the new boot password.
The newly generated encryption key encrypts the database, including the existing data.
For more information about this attribute, see "Encrypting databases with a new boot
password" in the Java DB Developer's Guide.

Combining with other attributes

Java DB Reference Manual

265

The newBootPassword attribute must be combined with the bootPassword=key attribute.

You cannot change the encryption provider or the encryption algorithm when you use the
newBootPassword attribute.

For an existing encrypted database for which authentication and SQL authorization are
both enabled, only the database owner can perform reencryption. Please see "Enabling
user authentication" and "Setting the SQL standard authorization mode" in the Java DB
Developer's Guide for more information.

Example

-- specify a new boot password for a database
jdbc:derby:salesdb;bootPassword=abc1234xyz;newBootPassword=new1234xyz

password=userPassword attribute
Function

A valid password for the given user name.

Combining with other attributes

Use in conjunction with the user=userName attribute.

jdbc:derby:toursDB;user=jack;password=upTheHill

restoreFrom=path attribute
Function

You can specify the restoreFrom=path attribute in the boot time connection URL to
restore a database using a full backup from the specified location. If a database with the
same name exists in the derby.system.home location, the whole database is deleted,
copied from the backup location, and then restarted.

The log files are copied to the same location they were in when the backup was taken.
The logDevice attribute can be used in conjunction with restoreFrom=path to store logs in
a different location.

Combining with other attributes

Do not combine this attribute with createFrom, rollForwardRecoveryFrom, or create.

URL: jdbc:derby:wombat;restoreFrom=d:/backup/wombat

rollForwardRecoveryFrom=path attribute
Function

You can specify the rollForwardRecoveryFrom=path in the boot time URL to restore
the database using a backup copy and perform rollforward recovery using archived and
active logs.

To restore a database using rollforward recovery, you must already have a backup copy
of the database, all the archived logs since then, and the active log files. All the log files
should be in the database log directory.

After a database is restored from full backup, transactions from the online archived logs
and the active logs are replayed.

Combining with other attributes

Java DB Reference Manual

266

Do not combine this attribute with createFrom, restoreFrom, or create.

URL: jdbc:derby:wombat;rollForwardRecoveryFrom=d:/backup/wombat

securityMechanism=value attribute
Function

Specifies a security mechanism for client access to the Network Server. The value is
numeric.

Valid numeric values are:

• 8, which specifies Strong Password Substitute security. If you specify this
mechanism, a strong password substitute is generated and used to authenticate
the user with the network server. The original password is never sent in any form
across the network.

• 9, which specifies Encrypted UserID and Encrypted Password security. If you
specify this mechanism, both the user ID and the password are encrypted. See
"Enabling the encrypted user ID and password security mechanism" in the Java
DB Server and Administration Guide for additional requirements for the use of this
security mechanism.

• 3, which specifies Clear Text Password security. Clear Text Password security is
the default if you do not specify the securityMechanism attribute and you specify
both the user=userName and password=userPassword attributes.

• 4, which specifies User Only security. User Only security is the default if you do
not specify the securityMechanism attribute and you specify the user=userName
attribute but not the password=userPassword attribute.

Combining with other attributes

The securityMechanism attribute must be combined with the user=userName attribute.

Example

-- specify Strong Password Substitute security
jdbc:derby://localhost/
mydb;user=myuser;password=mypassword;securityMechanism=8

shutdown=true attribute
Function

Shuts down the specified database if you specify a databaseName. (Reconnecting to
the database reboots the database.) For a database for which authentication and SQL
authorization are both enabled, only the database owner can perform shutdown of that
database. Please see "Enabling user authentication" and "Setting the SQL standard
authorization mode" in the Java DB Developer's Guide for more information.

Shuts down the entire Derby system if and only if you do not specify a databaseName.

When you are shutting down a single database, it lets Derby perform a final checkpoint
on the database.

When you are shutting down a system, it lets Derby perform a final checkpoint on all
system databases, deregister the JDBC driver, and shut down within the JVM before
the JVM exits. A successful shutdown always results in an SQLException indicating that
Derby has shut down and that there is no connection. Once Derby is shut down, you can
restart it by reloading the driver. For details on restarting Derby, see "Shutting down the
system" in the Java DB Developer's Guide.

Java DB Reference Manual

267

Checkpointing means writing all data and transaction information to disk so that no
recovery needs to be performed at the next connection.

Used to shut down the entire system only when it is embedded in an application.
Note: Any request to the DriverManager with a shutdown=true attribute raises an
exception.

-- shuts down entire system
jdbc:derby:;shutdown=true
-- shuts down salesDB (authentication not enabled)
jdbc:derby:salesDB;shutdown=true

territory=ll_CC attribute
Function

When creating or upgrading a database, use this attribute to associate a non-default
territory with the database. Setting the territory attribute overrides the default
system territory for that database. The default system territory is found using
java.util.Locale.getDefault().

Specify a territory in the form ll_CC, where ll is the two-letter language code, and CC is
the two-letter country code.

Language codes consist of a pair of lowercase letters that conform to ISO-639.
Table 105. Sample Language Codes

Language Code Description

de German

en English

es Spanish

ja Japanese

To see a full list of ISO-639 codes, go to
http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt.

Country codes consist of two uppercase letters that conform to ISO-3166.
Table 106. Sample Country Codes

Country Code Description

DE Germany

US United States

ES Spain

MX Mexico

JP Japan

A copy of ISO-3166 can be found at
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html.

Combining with other attributes

The territory attribute is used only when creating a database.

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

Java DB Reference Manual

268

In the following example, the new database has a territory of Spanish language and
Mexican nationality.

jdbc:derby:MexicanDB;create=true;territory=es_MX

You can use the collation attribute with the territory attribute to specify that
collation is based on the territory instead of based on Unicode codepoint collation,

user=userName attribute
Specifies a valid user name for the system, specified with a password. A valid user name
and password are required when user authentication is turned on.

Combining with other attributes

Use in conjunction with the password=userPassword attribute.

The following database connection URL connects the user jill to toursDB:

jdbc:derby:toursDB;user=jill;password=toFetchAPail

ssl=sslMode attribute
Function

Specifies the SSL mode of the client. The sslMode can be basic,
peerAuthentication, or off (the default). See "Network encryption and
authentication with SSL/TLS" in the Java DB Server and Administration Guide for details.

Combining with other attributes

May be combined with all other attributes.

Example

Connecting to mydb with basic SSL encryption:

jdbc:derby://localhost/mydb;ssl=basic

Creating a connection without specifying attributes
If no attributes are specified, you must specify a databaseName.

Derby opens a connection to an existing database with that name in the current system
directory. If the database does not exist, the connection attempt returns an SQLException
indicating that the database cannot be found.

jdbc:derby:mydb

Java DB Reference Manual

269

J2EE Compliance: Java Transaction API and javax.sql
Interfaces

J2EE, or the Java 2 Platform, Enterprise Edition, is a standard for development of
enterprise applications based on reusable components in a multi-tier environment. In
addition to the features of the Java 2 Platform, Standard Edition (J2SE) J2EE adds
support for Enterprise Java Beans (EJBs), Java Server Pages (JSPs), Servlets, XML and
many more. The J2EE architecture is used to bring together existing technologies and
enterprise applications in a single, manageable environment.

Derby is a J2EE-conformant component in a distributed J2EE system. As such,
Derby is one part of a larger system that includes, among other things, a JNDI server,
a connection pool module, a transaction manager, a resource manager, and user
applications. Within this system, Derby can serve as the resource manager.

For more information on J2EE, see the J2EE specification available at
http://java.sun.com/javaee/reference/ .

In order to qualify as a resource manager in a J2EE system, J2EE requires these basic
areas of support:

• JNDI support

Allows calling applications to register names for databases and access
them through those names instead of through database connection URLs.
Implementation of one of the JDBC interfaces, javax.sql.DataSource, provides this
support.

• Connection pooling

A mechanism by which a connection pool server keeps a set of open connections
to a resource manager (Derby). A user requesting a connection can get one
of the available connections from the pool. Such a connection pool is useful
in client/server environments because establishing a connection is relatively
expensive. In an embedded environment, connections are much cheaper, making
the performance advantage of a connection pool negligible. Implementation
of two of the JDBC interfaces, javax.sql.ConnectionPoolDataSource and
javax.sql.PooledConnection, provide this support.

• XA support

XA is one of several standards for distributed
transaction management. It is based on two-phase
commit. The javax.sql.XAxxx interfaces,
along with java.transaction.xa package, are
an abstract implementation of XA. For more
information about XA, see X/Open CAE
Specification-Distributed Transaction Processing:
The XA Specification, X/Open Document
No. XO/CAE/91/300 or ISBN 1 872630 24 3.
Implementation of the JTA API, the interfaces
of the java.transaction.xa package
(javax.sql.XAConnection,javax.sql.XADataSource,javax.transaction.xa.XAResource,javax.transaction.xa.Xid,
and javax.transaction.xa.XAException), provides this support.

With the exception of the core JDBC interfaces, these interfaces are not visible to the
end-user application; instead, they are used only by the other back-end components in
the system.

http://java.sun.com/javaee/reference/

Java DB Reference Manual

270

Note: For information on the classes that implement these interfaces and how to use
Derby as a resource manager, see Chapter 6, "Using Derby as a J2EE Resource
Manager" in the Java DB Developer's Guide.

The JTA API
The JTA API is made up of the two interfaces and one exception that are part of the
java.transaction.xa package. Derby fully implements this API.

• javax.transaction.xa.XAResource
• javax.transaction.xa.Xid
• javax.transaction.xa.XAException

Notes on Product Behavior
Recovered Global Transactions

Using the XAResource.prepare call causes a global transaction to enter a prepared state,
which allows it to be persistent. Typically, the prepared state is just a transitional state
before the transaction outcome is determined. However, if the system crashes, recovery
puts transactions in the prepared state back into that state and awaits instructions from
the transaction manager.

XAConnections, user names and passwords

If a user opens an XAConnection with a user name and password, the transaction it
created cannot be attached to an XAConnection opened with a different user name
and password. A transaction created with an XAConnection without a user name and
password can be attached to any XAConnection.

However, the user name and password for recovered global transactions are lost; any
XAConnection can commit or roll back that in-doubt transaction.
Note: Use the network client driver's XA DataSource interface
(org.apache.derby.jdbc.ClientXADataSource) when XA support is required in a remote
(client/server) environment.

javax.sql: JDBC Interfaces
This section documents the JDBC interfaces that Derby implements for J2EE
compliance.

For more details about these interfaces, see the API documentation
for your version of the Java Development Kit, which you can find at
http://java.sun.com/javase/reference/api.jsp.

• javax.sql.DataSource

An interface that is a factory for connections to the physical data source that the
object represents. An object that implements the DataSource interface will typically
be registered with a naming service based on the Java Naming and Directory
(JNDI) API.

• javax.sql.ConnectionPoolDataSource and javax.sql.PooledConnection

Establishing a connection to the database can be a relatively expensive operation
in client/server environments. Establishing the connection once and then using the
same connection for multiple requests can dramatically improve the performance of
a database.

The Derby implementation of ConnectionPoolDataSource and
PooledConnection interfaces allows a connection pool server to maintain a set of

http://java.sun.com/javase/reference/api.jsp

Java DB Reference Manual

271

such connections to the resource manager (Derby). In an embedded environment,
connections are much cheaper and connection pooling is not necessary.

• javax.sql.XAConnection

An XAConnection produces an XAResource, and, over its lifetime, many
Connections. This type of connection allows for distributed transactions.

• javax.sql.XADataSource

An XADataSource is simply a ConnectionPoolDataSource that produces
XAConnections.

In addition, Derby provides three methods for XADataSource, DataSource, and
ConnectionPoolDataSource. Derby supports a number of additional data source
properties:

• setCreateDatabase(String create)

Sets a property to create a database at the next connection. The string argument
must be "create".

• setShutdownDatabase(String shutdown)

Sets a property to shut down a database. Shuts down the database at the next
connection. The string argument must be "shutdown".

Note: Set these properties before getting the connection.

Java DB Reference Manual

272

Derby API

Derby provides Javadoc HTML files of API classes and interfaces in the javadoc
subdirectory.

This appendix provides a brief overview of the API. Derby does not provide the Javadoc
for the java.sql packages, the main API for working with Derby, because it is included
in the JDBC API. For information about Derby's implementation of JDBC, see JDBC
reference.

This document divides the API classes and interfaces into several categories. The
stand-alone tools and utilities are java classes that stand on their own and are invoked
in a command window. The JDBC implementation classes are standard JDBC APIs, and
are not invoked on the command-line. Instead, you invoke these only within a specified
context within another application.

Stand-alone tools and utilities
These classes are in the packages org.apache.derby.tools.

• org.apache.derby.tools.ij

An SQL scripting tool that can run as an embedded or a remote client/server
application. See the Java DB Tools and Utilities Guide.

• org.apache.derby.tools.sysinfo

A command-line, server-side utility that displays information about your JVM and
Derby product. See the Java DB Tools and Utilities Guide.

• org.apache.derby.tools.dblook

A utility to view all or parts of the Data Definition Language (DDL) for a given
database. See the Java DB Tools and Utilities Guide.

JDBC implementation classes

JDBC driver

This is the JDBC driver for Derby:
• org.apache.derby.jdbc.EmbeddedDriver

Used to boot the embedded built-in JDBC driver and the Derby system.
• org.apache.derby.jdbc.ClientDriver

Used to connect to the Derby Network Server in client-server mode.
See the Java DB Developer's Guide.

Data Source Classes

These classes are all related to Derby's implementation of javax.sql.DataSource and
related APIs. For more information, see the Java DB Developer's Guide.

Each of these classes has two variants. Use the first variant if your application runs on
JDK 1.5 or lower. Use the second variant (the one ending in "40") if your application runs
on JDK 1.6 or higher.

Embedded environment:

Java DB Reference Manual

273

• org.apache.derby.jdbc.EmbeddedDataSource and
org.apache.derby.jdbc.EmbeddedDataSource40

• org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource and
org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40

• org.apache.derby.jdbc.EmbeddedXADataSource and
org.apache.derby.jdbc.EmbeddedXADataSource40

Client-server environment
• org.apache.derby.jdbc.ClientDataSource and

org.apache.derby.jdbc.ClientDataSource40
• org.apache.derby.jdbc.ClientConnectionPoolDataSource and

org.apache.derby.jdbc.ClientConnectionPoolDataSource40
• org.apache.derby.jdbc.ClientXADataSource and

org.apache.derby.jdbc.ClientXADataSource40

Miscellaneous utilities and interfaces
• org.apache.derby.authentication.UserAuthenticator
• An interface provided by Derby. Classes that provide an alternate user

authentication scheme must implement this interface. For information about users,
see "Working with User Authentication" in Chapter 7 of the Java DB Developer's
Guide.

Java DB Reference Manual

274

Supported territories

The following is a list of supported territories:

Territory Derby territory setting (derby.territory)

Chinese (Simplified) zh_CN

Chinese (Traditional) zh_TW

Czech cs

French fr

German de_DE

Hungarian hu

Italian it

Japanese ja_JP

Korean ko_KR

Polish pl

Portuguese (Brazilian) pt_BR

Russian ru

Spanish es

Java DB Reference Manual

275

Derby limitations

The section lists the limitations associated with Derby.

Limitations for database manager values
Table 107. Database manager limitations
The following table lists limitations on various Database Manager values in Derby.

Value Limit

Maximum columns in a table 1,012

Maximum columns in a view 5,000

Maximum number of parameters in a
stored procedure

90

Maximum indexes on a table 32,767 or storage capacity

Maximum tables referenced in an SQL
statement or a view

storage capacity

Maximum elements in a select list 1,012

Maximum predicates in a WHERE or
HAVING clause

storage capacity

Maximum number of columns in a GROUP
BY clause

32,677

Maximum number of columns in an
ORDER BY clause

1,012

Maximum number of prepared statements storage capacity

Maximum declared cursors in a program storage capacity

Maximum number of cursors opened at
one time

storage capacity

Maximum number of constraints on a table storage capacity

Maximum level of subquery nesting storage capacity

Maximum number of subqueries in a
single statement

storage capacity

Maximum number of rows changed in a
unit of work

storage capacity

Maximum constants in a statement storage capacity

Maximum depth of cascaded triggers 16

DATE, TIME, and TIMESTAMP limitations
The following table lists limitations on date, time, and timestamp values in Derby.
Table 108. DATE, TIME, and TIMESTAMP limitations

Java DB Reference Manual

276

Value Limit

Smallest DATE value 0001-01-01

Largest DATE value 9999-12-31

Smallest TIME value 00:00:00

Largest TIME value 24:00:00

Smallest TIMESTAMP value 0001-01-01-00.00.00.000000

Largest TIMESTAMP value 9999-12-31-23.59.59.999999

Limitations on identifier length
Table 109. Identifier length limitations
The following table lists limitations on identifier lengths in Derby.

Identifier Maximum number of characters
allowed

constraint name 128

correlation name 128

cursor name 128

data source column name 128

data source index name 128

data source name 128

savepoint name 128

schema name 128

unqualified column name 128

unqualified function name 128

unqualified index name 128

unqualified procedure name 128

parameter name 128

unqualified trigger name 128

unqualified table name, view name, stored
procedure name

128

Numeric limitations
There are limitations on the numeric values in Derby.

Table 110. Numeric limitations

Value Limit

Smallest INTEGER -2,147,483,648

Largest INTEGER 2,147,483,647

Java DB Reference Manual

277

Value Limit

Smallest BIGINT -9,223,372,036,854,775,808

Largest BIGINT 9,223,372,036,854,775,807

Smallest SMALLINT -32,768

Largest SMALLINT 32,767

Largest decimal precision 31

Smallest DOUBLE -1.79769E+308

Largest DOUBLE 1.79769E+308

Smallest positive DOUBLE 2.225E-307

Largest negative DOUBLE -2.225E-307

Smallest REAL -3.402E+38

Largest REAL 3.402E+38

Smallest positive REAL 1.175E-37

Largest negative REAL -1.175E-37

String limitations
Table 111. String limitations
The following table contains limitations on string values in Derby.

Value Maximum Limit

Length of CHAR 254 characters

Length of VARCHAR 32,672 characters

Length of LONG VARCHAR 32,700 characters

Length of CLOB 2,147,483,647 characters

Length of BLOB 2,147,483,647 characters

Length of character constant 32,672

Length of concatenated character string 2,147,483,647

Length of concatenated binary string 2,147,483,647

Number of hex constant digits 16,336

Length of DOUBLE value constant 30 characters

XML limitations
The following table lists the limitations on XML data types in Derby.

Table 112. XML limitations

Issue Limitation

Length of XML 2,147,483,647 characters

Java DB Reference Manual

278

Issue Limitation

Use of XML operators Requires that the JAXP parser classes,
such as Apache Xerces, and Apache
Xalan classes are in the classpath.
Attempts to use XML operators without
these classes in the classpath results in an
error.

Java DB Reference Manual

279

Trademarks

The following terms are trademarks or registered trademarks of other companies and
have been used in at least one of the documents in the Apache Derby documentation
library:

Cloudscape, DB2, DB2 Universal Database, DRDA, and IBM are trademarks of
International Business Machines Corporation in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

	Cover
	Contents
	Copyright
	License
	Relationship between Java DB and
Derby
	About this guide
	Purpose of this document
	Audience
	How this guide is organized

	SQL language reference
	Capitalization and special characters
	SQL identifiers
	Rules for SQL92 identifiers
	SQL92Identifier
	Qualifying dictionary objects

	column-Name
	correlation-Name
	new-table-Name
	schemaName
	Simple-column-Name
	synonym-Name
	table-Name
	view-Name
	index-Name
	constraint-Name
	cursor-Name
	TriggerName
	AuthorizationIdentifier

	Statements
	Interaction with the dependency system
	ALTER TABLE statement
	CALL (PROCEDURE) statement
	CREATE statements
	CREATE FUNCTION statement
	CREATE INDEX statement
	CREATE PROCEDURE statement
	CREATE SCHEMA statement
	CREATE SYNONYM statement
	CREATE TABLE statement
	column-definition
	generated-column-spec

	CREATE TRIGGER statement
	ReferencingClause

	CREATE VIEW statement

	DECLARE GLOBAL TEMPORARY TABLE statement
	DELETE statement
	DROP statements
	DROP FUNCTION statement
	DROP INDEX statement
	DROP PROCEDURE statement
	DROP SCHEMA statement
	DROP SYNONYM statement
	DROP TABLE statement
	DROP TRIGGER statement
	DROP VIEW statement

	GRANT statement
	INSERT statement
	LOCK TABLE statement
	RENAME statements
	RENAME COLUMN statement
	RENAME INDEX statement
	RENAME TABLE statement

	REVOKE statement
	SET statements
	SET ISOLATION statement
	SET SCHEMA statement

	SELECT statement
	UPDATE statement

	SQL clauses
	CONSTRAINT clause
	Column-level-constraint
	Table-level constraint
	References specification
	searchCondition

	FOR UPDATE clause
	FROM clause
	GROUP BY clause
	HAVING clause
	ORDER BY clause
	WHERE clause
	WHERE CURRENT OF clause

	SQL expressions
	SelectExpression
	TableExpression
	TableOrViewExpression

	VALUES expression
	Expression precedence
	Boolean expressions
	Dynamic parameters
	Dynamic parameters example
	Where dynamic parameters are allowed

	JOIN operations
	INNER JOIN operation
	LEFT OUTER JOIN operation
	RIGHT OUTER JOIN operation

	SQL queries
	Query
	ScalarSubquery
	TableSubquery

	Built-in functions
	Standard built-in functions
	Aggregates (set functions)
	ABS or ABSVAL function
	ACOS function
	ASIN function
	ATAN function
	AVG function
	BIGINT function
	CASE expressions
	CAST function
	CEIL or CEILING function
	CHAR function
	Concatenation operator
	COS function
	COUNT function
	COUNT(*) function
	CURRENT DATE function
	CURRENT_DATE function
	CURRENT ISOLATION function
	CURRENT SCHEMA function
	CURRENT TIME function
	CURRENT_TIME function
	CURRENT TIMESTAMP function
	CURRENT_TIMESTAMP function
	CURRENT_USER function
	DATE function
	DAY function
	DEGREES function
	DOUBLE function
	EXP function
	FLOOR function
	HOUR function
	IDENTITY_VAL_LOCAL function
	INTEGER function
	LCASE or LOWER function
	LENGTH function
	LN or LOG function
	LOG10 function
	LOCATE function
	LTRIM function
	MAX function
	MIN function
	MINUTE function
	MOD function
	MONTH function
	NULLIF expressions
	PI function
	RADIANS function
	RTRIM function
	SECOND function
	SESSION_USER function
	SIN function
	SMALLINT function
	SQRT function
	SUBSTR function
	SUM function
	TAN function
	TIME function
	TIMESTAMP function
	TRIM function
	UCASE or UPPER function
	USER function
	VARCHAR function
	XMLEXISTS operator
	XMLPARSE operator
	XMLQUERY operator
	XMLSERIALIZE operator
	YEAR function

	Built-in system functions
	SYSCS_UTIL.SYSCS_CHECK_TABLE system function
	SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY system function
	SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS system function

	Built-in system procedures
	SYSCS_UTIL.SYSCS_BACKUP_DATABASE system procedure
	SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT system procedure
	SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE system procedure
	SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT system procedure
	SYSCS_UTIL.SYSCS_CHECKPOINT_DATABASE system procedure
	SYSCS_UTIL.SYSCS_COMPRESS_TABLE system procedure
	SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE system procedure
	SYSCS_UTIL.SYSCS_DISABLE_LOG_ARCHIVE_MODE system procedure
	SYSCS_UTIL.SYSCS_EXPORT_TABLE system procedure
	SYSCS_UTIL.SYSCS_EXPORT_TABLE_LOBS_TO_EXTFILE system procedure
	SYSCS_UTIL.SYSCS_EXPORT_QUERY system procedure
	SYSCS_UTIL.SYSCS_EXPORT_QUERY_LOBS_TO_EXTFILE system procedure
	SYSCS_UTIL.SYSCS_IMPORT_DATA system procedure
	SYSCS_UTIL.SYSCS_IMPORT_DATA_LOBS_FROM_EXTFILE system procedure
	SYSCS_UTIL.SYSCS_IMPORT_TABLE system procedure
	SYSCS_UTIL.SYSCS_IMPORT_TABLE_LOBS_FROM_EXTFILE system procedure
	SYSCS_UTIL.SYSCS_FREEZE_DATABASE system procedure
	SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE system procedure
	SYSCS_UTIL.SYSCS_RELOAD_SECURITY_POLICY system procedure
	SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY system procedure
	SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS system procedure
	SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING system procedure

	SYSCS_DIAG diagnostic tables and functions
	Data types
	Built-In type overview
	Numeric types
	Numeric type overview
	Numeric type promotion in expressions
	Storing values of one numeric data type in columns of another numeric
data type
	Scale for decimal arithmetic

	Data type assignments and comparison, sorting, and ordering
	BIGINT data type
	BLOB data type
	CHAR data type
	CHAR FOR BIT DATA data type
	CLOB data type
	DATE data type
	DECIMAL data type
	DOUBLE data type
	DOUBLE PRECISION data type
	FLOAT data type
	INTEGER data type
	LONG VARCHAR data type
	LONG VARCHAR FOR BIT DATA data type
	NUMERIC data type
	REAL data type
	SMALLINT data type
	TIME data type
	TIMESTAMP data type
	VARCHAR data type
	VARCHAR FOR BIT DATA data type
	XML data type

	SQL reserved words
	Derby support for SQL-92 features
	Derby system tables
	SYSALIASES system table
	SYSCHECKS system table
	SYSCOLPERMS system table
	SYSCOLUMNS system table
	SYSCONGLOMERATES system table
	SYSCONSTRAINTS system table
	SYSDEPENDS system table
	SYSFILES system table
	SYSFOREIGNKEYS system table
	SYSKEYS system table
	SYSROUTINEPERMS system table
	SYSSCHEMAS system table
	SYSSTATISTICS system table
	SYSSTATEMENTS system table
	SYSTABLEPERMS system table
	SYSTABLES system table
	SYSTRIGGERS system table
	SYSVIEWS system table

	Derby exception messages and SQL states
	SQL error messages and exceptions

	JDBC reference
	Core JDBC java.sql classes, interfaces, and methods
	java.sql.Driver interface
	java.sql.Driver.getPropertyInfo method

	java.sql.DriverManager.getConnection method
	Derby database connection
URL syntax
	Syntax of database connection URLs for applications with embedded databases
	Additional SQL syntax
	Attributes of the Derby database connection URL

	java.sql.Connection interface
	java.sql.Connection.setTransactionIsolation method
	java.sql.Connection.setReadOnly method
	java.sql.Connection.isReadOnly method
	Connection functionality not supported

	java.sql.DatabaseMetaData interface
	DatabaseMetaData result sets
	java.sql.DatabaseMetaData.getProcedureColumns method
	Parameters to getProcedureColumns
	Columns in the ResultSet returned by getProcedureColumns
	java.sql.DatabaseMetaData.getBestRowIdentifier method

	java.sql.Statement interface
	ResultSet objects

	java.sql.CallableStatement interface
	CallableStatements and OUT Parameters
	CallableStatements and INOUT Parameters

	java.sql.SQLException class
	java.sql.PreparedStatement interface
	Prepared statements and streaming columns

	java.sql.ResultSet interface
	ResultSets and streaming columns

	java.sql.ResultSetMetaData interface
	java.sql.SQLWarning class
	java.sql.SQLXML interface
	Mapping of java.sql.Types to SQL types
	Mapping of java.sql.Blob and java.sql.Clob interfaces
	Notes on mapping of java.sql.Blob and java.sql.Clob interfaces

	JDBC 2.0 features
	java.sql.CallableStatement interface: supported JDBC 2.0 methods
	java.sql.Connection interface: supported JDBC 2.0 methods
	java.sql.DatabaseMetaData interface: supported JDBC 2.0 methods
	java.sql.PreparedStatement interface: supported JDBC 2.0 methods
	java.sql.ResultSet interface: supported JDBC 2.0 methods
	java.sql.ResultSetMetaData interface: supported JDBC 2.0 methods
	java.sql.Statement interface: supported JDBC 2.0 methods

	java.sql.BatchUpdateException class
	JDBC Package for Connected Device Configuration/Foundation Profile
(JSR169)
	JDBC 3.0 features
	java.sql.Connection interface: supported JDBC 3.0 methods
	java.sql.DatabaseMetaData interface: supported JDBC 3.0 methods
	java.sql.ParameterMetaData interface: supported JDBC 3.0 methods
	java.sql.PreparedStatement interface: supported JDBC 3.0 methods
	java.sql.Savepoint interface
	Setting and rolling back to a savepoint
	Releasing a savepoint
	Rules for savepoints
	Restrictions on savepoints

	java.sql.Statement interface: supported JDBC 3.0 methods
	Autogenerated keys

	JDBC 4.0-only features
	Refined subclasses of SQLException
	java.sql.Connection interface: JDBC 4.0 features
	java.sql.DatabaseMetaData interface: JDBC 4.0 features
	java.sql.Statement interface: JDBC 4.0 features
	javax.sql.DataSource interface: JDBC 4.0 features

	JDBC escape syntax
	JDBC escape keyword for call statements
	JDBC escape syntax
	JDBC escape syntax for LIKE clauses
	JDBC escape syntax for fn keyword
	JDBC escape syntax for outer joins
	JDBC escape syntax for time formats
	JDBC escape syntax for date formats
	JDBC escape syntax for timestamp formats

	Setting attributes for the database connection URL
	bootPassword=key attribute
	collation=collation attribute
	create=true attribute
	createFrom=path attribute
	databaseName=nameofDatabase attribute
	dataEncryption=true attribute
	encryptionKey=key attribute
	encryptionProvider=providerName attribute
	encryptionAlgorithm=algorithm attribute
	logDevice=logDirectoryPath attribute
	newEncryptionKey=key attribute
	newBootPassword=newPassword attribute
	password=userPassword attribute
	restoreFrom=path attribute
	rollForwardRecoveryFrom=path attribute
	securityMechanism=value attribute
	shutdown=true attribute
	territory=ll_CC attribute
	user=userName attribute
	ssl=sslMode attribute
	Creating a connection without specifying attributes

	J2EE Compliance: Java Transaction API and javax.sql Interfaces
	The JTA API
	Notes on Product Behavior
	Recovered Global Transactions
	XAConnections, user names and passwords

	javax.sql: JDBC Interfaces

	Derby API
	Stand-alone tools and utilities
	JDBC implementation classes
	JDBC driver
	Data Source Classes

	Miscellaneous utilities and interfaces

	Supported territories
	Derby limitations
	Limitations for database manager values
	DATE, TIME, and TIMESTAMP limitations
	Limitations on identifier length
	Numeric limitations
	String limitations
	XML limitations

	Trademarks

